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Neural Graphics series

• Neural Graphics I, today 

• NeRF and pinhole camera system 

• Neural Graphics II on Nov 14 

• Camera pose refinement, Hash Grid, and surface modeling 

• Neural Graphics III on Nov 28 

• 3DGS, spherical harmonics, and reflective modeling
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Neural radiance fields

• Neural radiance fields (NeRFs) represent a scene by neural networks and synthesize 
novel-views (Mildenhall et al., 2020). 

• The radiance means “light or heat as emitted or reflected by something.” 

• The NeRFs is a learning framework for the optics.
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Novel-view synthesis
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Radiance fields

• In 3D computer graphics, a voxel represents a value on a regular grid in continuous 
three-dimensional space. 

• However, NeRFs represent each evaluated point using MLPs with two attributes: 
volume density  and emitted color . That’s why we refer to it as radiance!σ c

The term “voxel” is a compound word combining volume and pixel.
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Three components
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FΘ

x, y, z, θ, ϕ r, g, b, σ

1. Neural volumetric 3D 
scene representation

o

d

r(t) = o + td

2. Differentiable volumetric 
rendering function

3. Optimization to synthesize 
all training images

ℒ = ∑
r∈ℛ

∥Ĉ(r) − C(r)∥2
2



Demonstration

• A vanilla NeRF can give …

https://www.matthewtancik.com/nerf
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Commercial products 
using NeRFs and classical methods



Digital Twin Worlds Created by ALIKE Solutions (https://www.youtube.com/watch?v=ZB37ljqovk8&t=69s)

https://www.youtube.com/watch?v=ZB37ljqovk8&t=69s


Google Maps

• “New updates that make Maps look and feel more like the real world” —Sep 28, 2022 

• Google Maps help you get the feel for a neighborhood before you go, explore 250+ 
landmarks in aerial view, search for nearby places with Live View and more. 

• “Digital twin”

https://blog.google/products/maps/4-new-updates-maps-searchon-2022/
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Brandenburg Gate, Germany



Movie credit: Luma AI at https://lumalabs.ai/





Balenciaga Track Sneaker 
White Mesh and Nylon 
https://www.balenciaga.com/en-kr/track-sneaker-white-542023W1GB19000.html



Reality Converter by Apple
Makes it easy to convert, view, and customize USDZ 3D objects on Mac. 
Customize material properties with your own textures, and edit file metadata.  
You can even preview your USDZ object under a variety of lighting and  
environmental conditions 

https://developer.apple.com/news/?id=01132020a





Volume renderings



NeRF scene representation

• An MLP network  takes 3D location  and 2D viewing 
direction , giving an emitted color  and volume density . 

• A view-dependent modeling for physical world

FΘ : (x, d) → (c, σ) x = (x, y, z)
d = (θ, ϕ) c = (r, g, b) σ
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FΘ

x, y, z, θ, ϕ r, g, b, σ



Non-Lambertian NeRF

• The emitted color depends on both location and viewing direction.  

• While, the brightness of a Lambertian surface to an observer is the same regardless 
of the viewing direction. The surface's luminance is isotropic, and the luminous 
intensity obeys Lambert's cosine law. Yes, NeRF’s non-Lambertian.

Photometria (Lambert, 1760)
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Volume rendering with radiance fields

• Classical volume rendering (Kajiya et al., 1984) 

• Numerical estimation using quadrature 

• Hierarchical volume sampling
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Simplification

• The volume rendering used in NeRF does not consider scattering for computational 
efficiency, although it considers absorption and emission.

Credit: Novak et al., 2018, http://commons.wikimedia.org.
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Absorption Emission Scattering

http://commons.wikimedia.org


Simplification

• The volume rendering used in NeRF does not consider scattering for computational 
efficiency, although it considers absorption and emission.

Credit: Novak et al., 2018, http://commons.wikimedia.org.
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Absorption Emission Scattering

❌

http://commons.wikimedia.org


Classical volume rendering

• The volume density  is the differential probability at an infinitesimal particle at . 

• The expected color  of camera ray  with near and far bounds  and 
, respectively, is as follows: 

,  where  

σ(x) x

C(r) r(t) = o + td tn
tf

C(r) = ∫
tf

tn

T(t)σ(r(t))c(r(t), d)dt T(t) = exp( − ∫
t

tn

σ(r(s))ds)
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r(t) = o + td
σ

r(t)



Classical volume rendering

• The volume density  is the differential probability at an infinitesimal particle at . 

• The expected color  of camera ray  with near and far bounds  and 
, respectively, is as follows: 

,  where   

•  is the accumulated transmittance along the ray , i.e., the probability that the ray 
travels from  to  without hitting any other particle.

σ(x) x

C(r) r(t) = o + td tn
tf

C(r) = ∫
tf

tn

T(t)σ(r(t))c(r(t), d)dt T(t) = exp( − ∫
t

tn

σ(r(s))ds)
T(t) r

tn t
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Transmittance

• The transmittance function  is the probability of a ray traveling over the interval 
 without hitting any particles.  is equal to . 

T(t)
[0,t) T(t + dt) T(t)(1 − dt ⋅ σ(t))

T(t + dt) = T(t)(1 − dt ⋅ σ(t))
T(t + dt) − T(t)

dt
= T′￼(t) = − T(t)σ(t)

T(t)′￼

T(t)
= − σ(t) ⇔ ∫

b

a

T(t)′￼

T(t)
dt = log T(t)

b

a
= − ∫

b

a
σ(t)dt

log T(b) − log T(a) = − ∫
b

a
σ(t)dt ⇔

T(b)
T(a)

= exp( − ∫
b

a
σ(t)dt)

Volume Rendering Digest (for NeRF): https://arxiv.org/abs/2209.02417v1
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A hitting probability is the density.

Ref. logarithmic  
differentiation



Numerical estimation using quadrature

• The exact calculation of the integral is intractable and inefficient. One approximation 
is to estimate using quadrature, compensating representation’s resolution.
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Stratified sampling 

• Stratified sampling partition  into  evenly-spaced bins, and draw a sample from 
each bin, uniformly at random. Totally,  samples will be drawn. 

  for 

[tn, tf] N
N

ti ∼ 𝒰[tn +
i − 1

N
(tf − tn), tn +

i
N

(tf − tn)] i ∈ [1,2,…, N]
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Stratified sampling 

• Stratified sampling partition  into  evenly-spaced bins, and draw a sample from 
each bin, uniformly at random. Totally,  samples will be drawn. 

  for  

• The volume rendering with the stratified sampling gives the estimate . 

  where  

 where  is the distance between adjacent samples, and  and  are the 
volume density and colors at , which is cheap to evaluate using MLPs.

[tn, tf] N
N

ti ∼ 𝒰[tn +
i − 1

N
(tf − tn), tn +

i
N

(tf − tn)] i ∈ [1,2,…, N]

C(r)

Ĉ(r) =
N

∑
i=1

Ti(1 − exp(−σiδi))ci Ti = exp( −
i−1

∑
j=1

σjδj)
δi = ti+1 − ti σi ci

ti
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Hierarchical volume sampling

• An adaptive sampling strategy with two networks: the coarse and fine. 

• The stratified sampling is for the coarse network, while a more informed sampling is 
for the fine network using the previous results. 

• Then, the alpha-composited color and a piecewise constant PDF from this coarse 
network are the ground for the hierarchical volume sampling. 

,   

•  enables a faster evaluation of a rendered color, while the normalized , 
, defines the PDF for the sampling for fine networks.

Ĉc(r) =
Nc

∑
i=1

wici wi = Ti(1 − exp(−σiδi))

Ĉc(r) wi

ŵi = wi/Σ
Nc
j=1wj
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Hierarchical volume sampling (Cont’d)

• Then, compute the final rendered color of the ray  using  samples. 

• Similarly to importance sampling, but it is a non-uniform discretization rather than an 
independent probabilistic estimation of the entire integral.

Ĉf(r) Nc + Nf
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Positional encoding

• Spectral bias (Tancik et al., 2020) may interfere the learning of NeRF performing 
poorly at high-frequency variation in color and geometry (Rahaman et al., 2018). 

• Formulating with a composition of two functions  where  

 

• Applied to each of the three coordinate values in . 

• It is known that it makes MLP easily approximate a higher frequency function.

FΘ = F′￼Θ ∘ γ γ : ℝ → ℝ2L

γ(p) = (sin(20πp), cos(20πp), ⋯, sin(2L−1πp), cos(2L−1πp))

x ∈ [−1,1]3
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Optimization

• Assume that we know ground-truth camera poses and intrinsics, and scene bounds. 
The COLMAP structure-from-motion (SfM) package provides a good initialization for 
them (Schönberger et al., 2016). 

• The objective function is the total squared error between the rendered and true pixel 
colors for both the coarse and fine renderings: 

 

• where  is the randomly sampled batch of camera rays from the set of all pixels in 
the dataset. The first term ensures that the estimation of coarse network is reliable 
during training.

ℒ = ∑
r∈ℛ

[∥Ĉc(r) − C(r)∥2
2 + ∥Ĉf(r) − C(r)∥2

2]
ℛ

33



Datasets

• NeRF-Synthesis (Mildenhall et al., 2020) 

• Originally, this is the third set of Realistic Synthetic 360° consists of eight objects of 
complicated geometry and realistic non-Labertian materials. 

• Six of them are rendered from the viewpoints on the upper hemisphere, while 
the others are from the viewpoints on a full sphere at 800x800 resolution. 

• 100 training views and 200 for testing 

• Drum, ficus, hotdog, lego, mic, etc.
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Datasets (Cont’d)

• LLFF  (Mildenhall et al., 2019, 2020) 

• Real images of complex scenes 

• Roughly forward-facing images of 8 scenes captured by a handheld cellphone 

• 20 to 62 images, 1/8 views among them for testing

https://github.com/Fyusion/LLFF
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Datasets (Cont’d)

• IMC Phototourism  

• Collection of photos by tourists in a real-world scenario 

• The dataset is provided by the Image Matching Workshop (and Challenge) 

• COLMAP results are available.

https://www.cs.ubc.ca/research/image-matching-challenge/current/
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Credit: Martin-Brualla et al. (2021); https://nerf-w.github.io/



Hyperparameters

• In the early work, they used a batch size of 4K rays, =64, =128. 

• Adam optimizer with the learning rate of , exponentially decaying to 
, while the others are set to default. 

• Typically, 100-300k iterations to converge on a single NVIDIA V100 GPU taking 1-2 
days (which only takes few minutes nowadays).

Nc Nf

5 × 10−4

5 × 10−5
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Preprocessing

• So, the problem is how to pre-process the dataset? 

• For each image, the camera position . 

• For each pixel, the viewing direction  and the corresponding colors. 

• Terminology & concepts: 

• World, camera, and image coordinate systems 

• Normalized device coordinate (NDC)

o

d
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Coordinate Transforms

• Extrinsics and intrinsics parameters transform among world, camera, and image 
coordinates.

Figure modified from Peter Hedman’s
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Camera projection

 

where  is the -coordinate of the camera relative to the world origin.  and  are 
the principal point, ideally the center of the image. 

• We assume that we have the access to camera pose and intrinsics by COLMAP 
(Schönberger et al., 2016). 

• Usually, we assume the same focal length for  and , . 

zc (
u
v
1) =

fx 0 cx

0 fy cy

0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

x
y
z
1

zc z cx cy

x y f = fx = fy
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2D image  
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Intrinsic properties 
(scaling, optic center)

Extrinsic properties 
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camera pose matrix)

3D world  
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Extrinsic vs camera pose

• The extrinsic matrix is the inverse of the camera pose matrix. 

 

where  is the camera rotation matrix and  is the camera position in the world 
coordinate system. Note that one may show that: 

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

= (R t
0 1) = (Rc C

0 1)
−1

Rc C

(Rc C
0 1)

−1

= (Rc
⊺ −Rc

⊺C
0 1 )

Ref.  for a valid rotation matrix.R⊺
c = R−1

c
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Focal length

• Focal length  measures how strongly the system converges light, which is 
the inverse of the system’s optical power. 

• In our notation, it satisfies . But,  can be ignored due to , 
leading to , which is the distance to the near plane. 

• In our context, the unit of focal length is pixel.

f:= ( fx, fy)

1/fx = 1/n + 1/f 1/f f ≫ n
fx = fy ≈ n

Ref. iPhone 16’s main camera has the (effective) focal length of 26mm.
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Get ray directions

• The ray  for a pixel in the position of  of an image can be defined as: 

,    

• Now, we have preprocessed the dataset! We have  and , and  is the colors of 
the pixel in the position of  in the image

r = o + td (u, v)

d =
fx 0 cx

0 fy cy

0 0 1

r11 r12 r13
r21 r22 r23
r31 r32 r33

−1

(
u
v
1) o = −

r11 r12 r13
r21 r22 r23
r31 r32 r33

⊺ t1
t2
t3

d o C(r)
(u, v)
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Inverse of intrinsic x extrinsic camera matrix 
image space to world space

coordinate in  
image space camera position



Get ray directions

• The ray  for a pixel in the position of  of an image can be defined as: 

,    

r = o + td (u, v)

d =
r11 r12 r13
r21 r22 r23
r31 r32 r33

−1
u − cx

fx
v − cy

fy

1

o = −
r11 r12 r13
r21 r22 r23
r31 r32 r33

⊺ t1
t2
t3
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Inverse of the extrinsic rotation matrix 
camera space to world space (c2w)

direction in  
camera space camera position

fx 0 cx

0 fy cy

0 0 1

−1

=
1/fx 0 −cx /fx
0 1/fy −cy/fy
0 0 1 See the block matrix inversion.





Evaluation metrics

• Peak Signal-to-Noise Ratio (PSNR) 

• Structural Similarity Index Map (SSIM) 

• Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018)
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Peak Signal-to-Noise Ratio (PSNR)

• The ratio between the maximum power of a signal and the power of corrupting noise 
that affects the fidelity of a generated image. 

• For the pixels , PNSR is a logarithm of MSE defined as: 

 

 

where  denotes the maximum value of pixel color. For the RGB color space, we 
take the average over color channel.

∈ [0,1]

PSNR = 10 log10( MAXI

MSE )
MSE =

∑H
i=1 ∑W

j=1 (I0(i, j) − I1(i, j))2

HW

MAXI
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Structural Similarity Index Map (SSIM)

• SSIM assesses perceptual differences, luminance, contrast, and structural. 

 

• where  and  to prevent division by near-zero.  is the max pixel-
value. Some uses  and  or , a very small value.

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)

c1 = (k1L)2 c2 = (k2L)2 L
k1 = 0.01 k2 = 0.03 c1 = c2 = ϵ
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Learned Perceptual Image Patch Similarity (LPIPS)

• A distance  between two patches  and , given a network . The  is calculated 
using  and  in  for the layer  of .  

• Before that it channel-wisely scales the activations by a vector of , we l2-
normalize for the channel dimension. The  is defined as follows: 

 

• where the linear weights  is fine-tuned (  is fixed), all fine-tuned, or learning from scratch.

d x x0 ℱ d
̂yl ̂y0

l ℝHl×Wl×Cl l ℱ

wl ∈ ℝCl

d

d(x, x0) = ∑
l

1
HlWl ∑

h,w

∥wl ∘ ( ̂yl
hw − ̂y0

l
hw)∥2

2

wl ℱ
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Camera Pose Refinement



Assumption of perfect camera poses

• NeRFs assume that it knows the perfect camera poses for training images to get 
accurate training rays in the world coordinate system for photometric supervision. 

• Imperfect camera poses are the source of blurred images or artifactual floatings from 
inaccurate depth estimation.

Astigmatism 난시
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Camera pose errors

• Most benchmarks utilizes the COLMAP (SfM) library to estimate camera poses, which 
used to have some degree of errors.  

• COLMAP estimates the camera poses from a set of (un)ordered images. It calculates 
camera intrinsics and extrinsics (position and orientation). 

• With studio capturing, camera calibration is crucial to determine camera intrinsic 
parameters such as focal length, principal point, and lens distortion coefficients.
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Ray directions with pose errors

• The noised ray  for a pixel in the position of  of an image: 

,    

 

• Here, we assume that the pose errors are tolerable for local refinement methods 
using error back-propagation. (e.g., < 60 )

r̃(t) = õ + td̃ (u, v)

d̃ =
r̃11 r̃12 r̃13
r̃21 r̃22 r̃23
r̃31 r̃32 r̃33

−1
fx 0 cx

0 fy cy

0 0 1

−1

(
u
v
1) õ = −

r̃11 r̃12 r̃13
r̃21 r̃22 r̃23
r̃31 r̃32 r̃33

−1 t̃1

t̃2

t̃3

∘
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A major pose error is refined within 5k iterations (not epoch, sorry for that).



Gradient analysis

• The volume rendering with the stratified sampling gives the estimated . 

  where  

• Let’s focus on a unit of photometric supervision, the pair of a ray and its 
corresponding pixel colors. The gradient with respect to a sample  is: 

 

• The network outputs  and  are subjects to calculate the input gradient.

C(r)

Ĉ(r) =
N

∑
i=1

Ti(1 − exp(−σiδi))ci Ti = exp( −
i−1

∑
j=1

σjδj)

r(ti)

∂Ĉ(r)
∂r(ti)

=
∂Ĉ(r)

∂σi

∂σi

∂r(ti)
+

∂Ĉ(r)
∂ci

∂ci

∂r(ti)

σi ci
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Gradient analysis (cont’d)

• In turn, the gradient of a sample  on the ray  with respect to  and  is: 

 

 

• The farther from the ray origin, the more the camera orientation changes. 

• Note that the scale problem arises between the relative importance of camera location 
and camera orientation since  can be less than 1 or greater than 1.

r(ti) r õ d̃

∂r(ti)
∂õ

=
∂(õ + tid̃)

∂õ
= 1

∂r(ti)
∂d̃

=
∂(õ + tid̃)

∂d̃
= ti

E[ti]

The intrinsic parameters can also be optimized similarly.
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o

NeRF Mip-NeRF

Recent works may include…

• Voxel-based method 

• Plenoxels (Yu et al., 2021), TensoRF (Chen et la., 2022), Instant-NGP (Müller et al., 2022) 

• Camera pose refinement 

• BARF (Lin et al., 2021), GARF (Chng et al., 2022), ✨Instant-Pose (Heo et al., 2023) 

• DUSt3R (Wang et al., 2023), MASt3R (Leroy et al., 2024) 

• Mip-NeRF (Barron et al., 2021) 

• DreamField (Jain et al., 2022) 

• DreamFusion (Poole et al., 2022)
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Conclusion

• Novel views are synthesized by optimizing the volume rendering function through 
neural networks, using a sparse set of input images with known poses. 

• The whole procedure is differentiable; however, it requires known camera poses to 
convert image coordinates to world coordinates for training rays. 

• We will explore how to learn camera poses through end-to-end optimization, 
especially for fast voxel-based methods, which are known to be challenging.
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