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Today’s lecture

• Contents 

• Multimodal pre-training 

• Large-scale multimodal pre-training
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Please don't hesitate to ask questions!  
Your questions help everyone (including me) learn better. 
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Multimodal Pre-training



Multimodal representation

• The goal of representation learning (recap. Lecture 3)  

• Image space:  (representation space)  

• Compact vector 

• Represents input contents 

• Can transfer to other tasks

2563×300×300 → 1,024

5

It’s a Dog!

Colors, 
Intensities

Edges, textures Shapes

Representation

Classifier: 
“Hmm, given those  

features, …”



Multimodal representation

• Multimodal representation (recap. Lecture 2)
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Input modality X

Input modality Y

model

Fused representation Z

Input modality X

Input modality Y

model

Shared representation
model

• Goal of multimodal pre-training: obtain a good multimodal representation



Platonic Representation Hypothesis
• Neural networks, trained with different objectives on 

different data and modalities, are converging to a shared 
statistical model of reality in their representation spaces. 
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“The Platonic Representation Hypothesis”, Position Paper in ICML 2024. 



Multimodal pre-training

• Recent multimodal pre-training has been developed based on "Vision-and-Language"  

• Why Vision-and-language? 

• Training data: MS-COCO, CC3M, CC12M, LAION-5B, ... 

• Evaluation tasks: Image captioning, cross-modal retrieval, VQA, ... 

• Vision-Language Pre-training (VLP) 
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Vision-and-language pre-training

• How to fuse or link different modalities? (recap. Lecture 2)
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Text Image

Late fusion

Text Image

Early fusion

Text Image

Intermediate fusion

Text Image

Modulation fusion



Vision-and-language pre-training

• Objective — Self-supervised learning 
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Transformer 
Encoder

Visible patches  
only (efficient)

Transformer 
Decoder

Attach mask  
tokens

Reconstruct 
target image

Input image

Masked Auto-Encoder (MAE) (He et al., 2022)

view 1

view 2

Similar

Dissimilar

Contrastive learning



Vision-and-language pre-training

• Objective — Self-supervised learning  

• Predictive task: Masked modeling (modality agnostic) 

• Inter-sample (instance) task: Contrastive learning  

• Positive pair: image–caption (human-annotated like MS-COCO, or 
alt-text like CC, LAION-2B/5B) 

• Negative pair: others 
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Vision-and-Language Pre-training 
BERT-based approach



• Self-supervised learning: Masked language modeling, Next sentence prediction

BERT (2018)

"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" (2018)
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VisualBERT (Aug, 2019)

• Simply concatenate visual region features and word embeddings as input  

• Use self-attention to implicitly align elements of the text and image regions
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“VisualBERT: A Simple and Performant Baseline for Vision and Language” (2019)



VisualBERT (Aug, 2019)

• Objectives: masked language modeling (MLM), image-text matching (ITM)
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“VisualBERT: A Simple and Performant Baseline for Vision and Language” (2019)



ViLBERT (Aug, 2019)
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• Objectives: image-text matching (ITM), masked language modeling (MLM), masked 
region modeling (MRM)

“ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks” NeurIPS (2019)



ViLBERT (Aug, 2019)
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• MLM 

• Follows MLM in standard BERT 

• MRM 

• Predict a distribution over semantic classes 
for the corresponding image region 

• ITM (Binary classification task) 

• Similar to NSP in BERT 

• Positive (matched) or negative (unmatched)



UNITER (2020)

• Objectives: image-text matching (ITM), masked language modeling (MLM), masked 
region modeling (MRM), word region alignment (WRA)

“UNITER: Universal image-text representation learning” ECCV (2020)
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Relying on external visual encoder

• “We use Faster R-CNN (with ResNet-101 backbone) pretrained on the Visual Genome 
dataset (…) to extract region features” in ViLBERT (Lu et al, 2019) 

• Same in VisualBERT (Li et al., 2019), UNITER (Chen et al, 2019), OSCAR (Li et al., 
2020), VinVL (Zhang et al., 2021) 

"Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" (2015)
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Beyond regional features — ViLT

• Objectives: image-text matching (ITM), masked language modeling (MLM), word 
patch alignment (WPA)
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“ViLT: Vision-and-language transformer without convolution or region supervision” ICML (2021)



ViLT

• Objectives: image-text matching (ITM), masked language modeling (MLM), word 
patch alignment (WPA)

“ViLT: Vision-and-language transformer without convolution or region supervision” ICML (2021)
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VQA & Visual reasoning Retrieval



Vision-and-Language Pre-training 
Contrastive learning



CLIP



Contrastive Language-Image Pre-training (CLIP)

Radford et al., “Learning transferable visual models from natural language supervision,” ICML (2021).
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CLIP — motivation 

• We saw NLP tasks can be solved in a zero-shot manner (GPT family)  

• But, in vision tasks: zero-shot 11.5% accuracy on ImageNet in 2017

Referecne: slides for CS886 at UWaterloo (2023)
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CLIP — motivation 

• We saw NLP tasks can be solved in a zero-shot manner (GPT family)  

• But, in vision tasks: zero-shot 11.5% accuracy on ImageNet in 2017 

• Similar methods 

• VirTex (Desai & Johnson, 2020) 

• ICMLM (Bulent Sariyildiz et al., 2020) 

• ConVIRT (Zhang et al., 2020)

Referecne: slides for CS886 at UWaterloo (2023)
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• But, small-scale training (< 1 million images)



CLIP — motivation 

• Solution: Scaling-up 

• Larger data size: 400 million image-text pairs 

• Larger model size: ViT-Base/Large (with architectural change from Conv to ViT)

Referecne: slides for CS886 at UWaterloo (2023)
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CLIP — contrastive learning

From lecture 12 of Advances in Computer Vision, (MIT CSAIL, Fall 2024) 
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Supervised learning is contrastive learning Contrastive learning with two views (e.g., SimCLR) 



CLIP — pre-training
• Learning Transferable Visual Models From Natural Language Supervision 

Radford et al., “Learning transferable visual models from natural language supervision,” ICML (2021).
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CLIP — pre-training

Radford et al., “Learning transferable visual models from natural language supervision,” ICML (2021).
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• Data: WIT-400M 
• Image encoder: ResNets or ViT-B/L 
• Text encoder: Transformer



CLIP — inference (zero-shot)
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Radford et al., “Learning transferable visual models from natural language supervision,” ICML (2021).



CLIP — inference (zero-shot)
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Radford et al., “Learning transferable visual models from natural language supervision,” ICML (2021).



ALIGN

• Scaling Up Visual and Vision-Language Representation Learning With Noisy Text 
Supervision (by Google)
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"Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision", ICML 2021

• Data: ALIGN 1.8B  
• Image encoder: EfficientNet-L2  
• Text encoder: BERT Transformer 
• (From scratch) 



• Analysis of the embedding space

ALIGN
34

"Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision", ICML 2021



Mix with contrastive learning: ALBEF
• Objectives: image-text contrastive (ITC), image-text matching (ITM), masked language modeling (MLM)

“Align before fuse: Vision and language representation learning with momentum distillation” NeurIPS (2022)
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Data quality for CLIP



Reproducing CLIP

• CLIP (Radford et al., 2021) vs. Open-CLIP (Cherti et al., 2022) 

• CLIP trained with (private) WIT-400M 

• Open-CLIP trained with (open) LAION-400M (later, LAION-2B) 

Cherti et al., “Reproducible scaling laws for contrastive language-image learning” (2022)
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Beyond CLIP data

• Demystifying CLIP Data (MetaCLIP) 

Demystifying CLIP Data (Meta CLIP), 2023.
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Beyond web-crawled (CommonCrawl),  
They claim the importance of metadata curation and balancing  



Beyond CLIP data — DataComp

• Beyond LAION datasets, multimodal data curation and filtering are the keys

DataComp: In search of the next generation of multimodal datasets (2023)
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Behave like bag-of-words 

• Do they understand the structure and composition of the query?

“When and why vision-language models behave like bags-of-words, and what to do about it?”, ICLR 2023.
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SigLIP: Scaling up training with  
Sigmoid loss



Revisit CLIP

• Softmax-based contrastive objective (CLIP’s objective)
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Revisit CLIP

• Softmax-based contrastive objective (CLIP’s objective) 

• Contrastive learning requires large batch-size (e.g., 16K, 32K)  

• To compute the denominator term, gather all image features (and text features)
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SigLIP: Sigmoid-based loss

Reference: CS886 @ UWaterloo
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•  is the label for the image ( ) and text ( ) — 1 if paired, otherwise 0 

• Compared to Softmax, sigmoid loss simplifies the problem to binary classification

zij xi yj



SigLIP: Sigmoid-based loss
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• Efficient implementation: parallelism, no all-gather ops

“Sigmoid Loss for Language Image Pre-Training”, ICCV 2023.



SigLIP: Sigmoid-based loss

• Results (Acc vs. batch-size)

“Sigmoid Loss for Language Image Pre-Training”, ICCV 2023.
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Vision-and-Language Pre-training 
Generative training



Encoder-decoder architecture

• Encoder architecture methods (e.g., CLIP, ALIGN, ALBEF) show 
weakness in text generation tasks (e.g., captioning)  

• Encoder-decoder architecture with causal language modeling
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Encoder 
(Transformer)

Decoder 
(Transformer)

“The man at bat readies to swing ...”

<start> The man at bat ... 



BLIP

• Objectives: image-text matching, language modeling, image-text contrastive learning

49

“BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation” ICML (2021)



BLIP

• Objectives: image-text matching, image-text contrastive learning, language modeling
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“BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation” ICML (2021)

?



BLIP

• Objectives: image-text matching, image-text contrastive learning, language modeling
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“BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation” ICML (2021)



BLIP

• Captioner and filter: produce synthetic captions, and remove noisy image-text pairs. 

• Filtering and re-captioning in MS-COCO style  Still meaningful in large-scale? →

“BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation” ICML (2021)
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BLIP

• Noisy captions vs. (clean) synthetic captions

“BLIP: Bootstrapping Language-Image Pre-training …” ICML (2021)
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SimVLM

• Only trained with a prefix language modeling objective

“SimVLM: Simple visual language model pertaining with weak supervision” ICLR (2022)
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Recap — SimVLM’s versatility

• SimVLM (Wang et al., 2021) “pretrains on large-scale web datasets for both image-
text and text-only inputs.” 

• Their formulation of PrefixLM is modality-agnostic, where text-only corpora to 
compensate for noisy text supervision in web-crawled datasets.

Transformer Encoder Transformer Decoder

Two brown and white dogs 
Text tokens

Image patch tokens
<s> running         on      a     dirt   road

happily

running         on      a     dirt   road  </s>
happily



Summary

• Uni-encoder: VisualBERT, ViLBERT, UNITER, ViLT 

• Dual-encoder: CLIP, ALIGN, ALBEF 

• Encoder-decoder: BLIP, SimVLM
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Break



Large-scale  
Multimodal Pre-training



Scaling-up VLP

• Larger model size and bigger dataset
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Scaling-up VLP: CoCa

• Contrastive loss (CLIP) + Captioning loss (SimVLM)

“Coca: Contrastive captioners are image-text foundation models” TMLR (2022)
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• Data: ALIGN 1.8B + JFT-3B  
• Model size: Image encoder 1B, Text decoder 1.1B



Scaling-up VLP: CoCa

“Coca: Contrastive captioners are image-text foundation models” TMLR (2022)
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• Frozen feature evaluation  
• Outperforms task-specific models



Scaling-up VLP: BEiT-3
• Image as a Foreign Language: BEIT Pretraining for All Vision and Vision-Language Tasks 

• Simple architecture design: Encoder-only Transformers 

• Simple objective: Masked [data] prediction (no contrastive learning)
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Scaling-up VLP: BEiT-3
• Image as a Foreign Language: BEIT Pretraining for All Vision and Vision-Language Tasks 

• Simple architecture design: Encoder-only Transformers 

• Simple objective: Masked [data] prediction (no contrastive learning)
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Switching Modality Experts

In a batch: image + text + (image+text)
1
3

1
3

1
3

Fully Shared Attention Layers



Scaling-up VLP: BEiT-3
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• Model size: 1.9B params 
• Data: 21M image-text pairs, 15M images, 160GB texts 

• Task-wise fine-tuning 
• Outperforms CoCa (tuning upon frozen features)



Scaling-up VLP: PaLI

• PaLI: A Jointly-Scaled Multilingual Language-Image Model (Google)  

• Reuse of unimodal backbones 

• Vision: ViT-G (1.8B params) 

• Language: mT5-XXL (13B params) 

• WebLI dataset  

• Web crawled image-text covering 109 languages

• 10B images, 12B alt-text, and 29B image-OCR pairs  

"PaLI: A Jointly-Scaled Multilingual Language-Image Model" ICLR, 2023.
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Scaling-up VLP: PaLI

• VQA-like LM objective 

• Experiments (says better than BEiT-3)
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"PaLI: A Jointly-Scaled Multilingual Language-Image Model" ICLR, 2023.



The LLM era begins

"A Survey of Large Language Models"
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The LLM era begins

"A Survey of Large Language Models"
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Toward the multimodal ability in LLM era

• Industry: Build upon their closed (private) LLMs 

• E.g., GPT, Gemini, HyperCLOVA-X, ...  

• Academia: Leverage public (and/or open-source, open-data) LLMs 

• E.g., Llama, Mistral, Qwen, OLMo, ... 
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Frozen: Multimodality on frozen LLMs

• Frozen: Multimodal Few-Shot Learning with Frozen Language Models (DeepMind) 

• Goal: few-shot prompting, without fine-tuning

"Multimodal Few-Shot Learning with Frozen Language Models" (NeurIPS, 2021)
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Frozen: Multimodality on frozen LLMs
71

Training (only update vision encoder) Inference

(7B params)

Image captioning (language modeling) objective. CC3M

"Multimodal Few-Shot Learning with Frozen Language Models" (NeurIPS, 2021)



Frozen: Multimodality on frozen LLMs

• Impressive zero-shot (n=0) and few-shot (n=4) performance 

• But, huge gap to SOTA
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"Multimodal Few-Shot Learning with Frozen Language Models" (NeurIPS, 2021)



Flamingo🦩

• Flamingo: a Visual Language Model for Few-Shot Learning (DeepMind)

“Flamingo: a Visual Language Model for Few-Shot Learning” NeurIPS (2022)
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Flamingo🦩
• Bridge powerful pretrained vision-only and language-only models 

• Handle sequences of arbitrarily interleaved visual and textual data 

• Seamlessly ingest images or videos as inputs. (Perceiver Resampler, Gated-XAttn)
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“Flamingo: a Visual Language Model for Few-Shot Learning” NeurIPS (2022)

Objective: next (text) token 
prediction



Flamingo🦩

• Training data: 

• ALIGN noisy image-text pairs: 1.8B 

• LTIP (Long Text & Image Pairs): 312M  

• M3W (MultiModal MassiveWeb): 43M image-text interleaved data
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“Flamingo: a Visual Language Model for Few-Shot Learning” NeurIPS (2022)



Flamingo🦩

• Model architecture: Perceiver resampler + Gated Xattention

“Flamingo: a Visual Language Model for Few-Shot Learning” NeurIPS (2022)
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Flamingo🦩

• Perceiver resampler

“Flamingo: a Visual Language Model for Few-Shot Learning” NeurIPS (2022)
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Flamingo🦩

• GATED XATTN-DENSE

“Flamingo: a Visual Language Model for Few-Shot Learning” NeurIPS (2022)
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Flamingo🦩

• Results: near SOTA without fine-tuning 
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FrozenBiLM

• Adapters for VideoQA

“Zero-shot video question answering via frozen bidirectional language models” NeurIPS (2022)
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BLIP-2

• BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and 
Large Language Models 

• Training (vision encoder) + (language model) is heavy (e.g., Frozen, Flamingo) 

• Lightweight way to bridge two modalities 

"BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models", ICML 2023
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BLIP-2

• BLIP-2 has two-stage training: (1) training Q-Former (2) Integrating with LLMs 

• Q-Former: similar to Perceiver Resampler of Flamingo🦩 

• Objectives: image-text matching, text generation, image-text contrastive learning
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"BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models", ICML 2023



BLIP-2

• Connect Q-Former (with the frozen image encoder attached) to a frozen LLM
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Decoder-based LLM (e.g. OPT) - language modeling loss

Encoder-Decoder-based LLM (e.g. FlanT5) - prefix language modeling loss

Soft visual prompts

"BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models", ICML 2023



BLIP-2

• Performance 

• Relatively small model size, open-sourced model 
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Production-level Large VLMs

GPT-4 Technical Report (2023)
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LLaVA

• LLaVA: Large Language and Vision Assistant 

• What is missing in previous works? 

• Lack of Instruction-following ability   

• Lack of instruction-related data 

• Then, how to collect the vision-language 
instruction dataset? 

• Human annotation is too costly (e.g., read text 
and see image, then write the output) 

• Leverage LLMs to generate instruction data

"Large Language and Vision Assistant", NeurIPS (2023)
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LLaVA

• Use language-only GPT-4 as strong teacher 

• Creating dataset: 158K image-text instruction dataset
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"Large Language and Vision Assistant", NeurIPS (2023)



LLaVA

• Model architecture 

• Vision encoder: CLIP ViT-L/14 

• LLM: Vicuna-7B
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"Large Language and Vision Assistant", NeurIPS (2023)



Vision-language Models 
2024~



Meta CLIP 2 (2025)

• Previous filtering: English-based, data with non-English will be removed 

• This causes multi-linguality problem in CLIP 
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Meta CLIP 2: A Worldwide Scaling Recipe, 2025



SigLIP 2 (2025)

• Better localization and dense prediction tasks (semantic segmentation, etc.)  

• Vision-inspired techniques on vision encoders 

• Add captioning loss 
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 “SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features, 2025



Qwen-VL / Kimi-VL 
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Kimi-VL (https://arxiv.org/abs/2504.07491)Qwen2-VL (https://arxiv.org/abs/2409.12191) 

https://arxiv.org/abs/2504.07491
https://arxiv.org/abs/2409.12191


Qwen-VL / Kimi-VL 
93

Kimi-VL (https://arxiv.org/abs/2504.07491)Qwen2-VL (https://arxiv.org/abs/2409.12191) 

Next-token (text) prediction loss

https://arxiv.org/abs/2504.07491
https://arxiv.org/abs/2409.12191


Conclusion

• Scaling-up multimodal model size 

• Scaling-up multimodal dataset size  

• Simplified architecture and objective 

94



Thank You!



Reference materials

• https://cs.uwaterloo.ca/~wenhuche/teaching/cs886/ 

• https://advances-in-vision.github.io/schedule.html
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https://cs.uwaterloo.ca/~wenhuche/teaching/cs886/
https://advances-in-vision.github.io/schedule.html

