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Today’s lecture
• Contents

• Pre-training
• Supervised Learning
• Self-supervised Learning 
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Multimodal Pre-training



Pre-training
• The question is: how are Deep Learning models learned?

• Usually, we use pre-training and fine-tuning paradigm
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Pre-training
• Pre-training and fine-tuning paradigm on vision models
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Pre-training
• Pre-training and fine-tuning paradigm on multimodal models
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Pre-training
<Matching image-text pair>

Fine-tuning
<Visual question answering>

model model

“What is the mustache 
made of?”

banana

“The man at bat readies to swing at 
the pitch while the umpire looks 

on.”

True?

False?

→ Large-scale data, simple task → Small data, complex task



Pre-training
• Today's goal is to understand (general) pre-training

• We will learn multimodal pre-training next week 😅

7



Representation learning
• Continuing from Lecture 2, “Multimodal Representation Learning”

• The goal of pre-training: obtain good representation ability

• What is representation? 
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Representation learning
• Continuing from Lecture 3, “Multimodal Representation Learning”

• The goal of pre-training: obtain good representation ability

• What is representation? 
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Lee et al., "Unsupervised learning of hierarchical representations with convolutional deep belief networks." 2011.
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Representation learning
• Continuing from Lecture 3, “Multimodal Representation Learning”

• The goal of pre-training: obtain good representation ability

• What is representation? 
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It’s a Dog!

Classifier:
“Hmm, given those 

features, …”
Colors,

Intensities
Edges, textures Shapes

Lee et al., "Unsupervised learning of hierarchical representations with convolutional deep belief networks." 2011.



Representation learning
• Continuing from Lecture 3, “Multimodal Representation Learning”

• The goal of pre-training: obtain good representation ability

• What is representation? 
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Representation learning
• Continuing from Lecture 3, “Multimodal Representation Learning”

• The goal of pre-training: obtain good representation ability

• What is representation? 
• Image space: 2563×300×300 → 1,024
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Representation learning
• Continuing from Lecture 3, “Multimodal Representation Learning”

• The goal of pre-training: obtain good representation ability

• What is representation? 
• Image space: 
• Compact vector
• Represents input contents
• Can transfer to other tasks

2563×300×300 → 1,024
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It’s a Dog!

Colors,
Intensities

Edges, textures Shapes

Representation

Lee et al., "Unsupervised learning of hierarchical representations with convolutional deep belief networks." 2011.

Classifier:
“Hmm, given those 

features, …”



Supervised Learning



Supervised learning
• A classification model learns representation. 
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Supervised learning
• A classification model learns representation. 

• Data
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Supervised learning
• A classification model learns representation. 

• Data, model
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Supervised learning
• A classification model learns representation.

• Data, model, objective
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Supervised learning
• Objective 
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0
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Sheep

model
1.5

0.9

0.15

Training signal (objective)

0.6

0.3

0.1

Input x logit z Target yŷ = σ(z)

Softmax:  ̂yi =
ezi

∑j ezj

Loss:  −∑
i

yi ⋅ log ̂yi

Sigmoid:  ̂yi =
1

1 + e−zi



• VGGNet (2014): 16/19 Layers• AlexNet (2012): 8 Layers

Deep model architecture

"Imagenet classification with deep convolutional neural networks", NIPS 2012. 
"Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015. 
"Deep Residual Learning for Image Recognition", CVPR 2016.
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• ResNet (2016): >100 Layers with Residual Connection
https://www.kaggle.com/code/blurredmachine/vggnet-16-architecture-a-complete-guide



• AlexNet (2012)

• VGGNet (2014)

• ResNet (2016)

Deep model architecture
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Deep model architecture
22

• ? (2018)

• ? (2020)

• AlexNet (2012)

• VGGNet (2014)

• ResNet (2016)



Deep model architecture
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• Transformers (2018)

• Vision Transformers (ViTs) (2020)

• AlexNet (2012)

• VGGNet (2014)

• ResNet (2016)



• Remind lecture 2’s Transformers

Vision Transformers
24

Add & LayerNorm

Feed Forward

Add & LayerNorm

Multi-head Attention

Q, K, V

Z

X

Self-attention block



Vision Transformers
• Vision Transformers on ImageNet benchmark
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Supervised learning — Data
• ImageNet — Most famous vision dataset and benchmark

Deng et al., "Imagenet: A large-scale hierarchical image database". CVPR 2009.
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1.28M images
1K Categories



Supervised learning — Data
• ImageNet — Most famous vision dataset and benchmark
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Data augmentation — Input level

Documentation of PyTorch
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Grayscale

ColorJitter

CenterCrop

import torchvision.transforms as T 
out_img = T.grayscale()(org_img) 
out_img = T.Centercrop(size=30)(org_img) 
out_img = T.RandomAffine(degrees=(30,70), 
translate=(0.1,0.3), scale=(0.5, 0.75))

RandomAffine

…



Data augmentation — Input level
29

Cutout, RandomErasing

Devries et al., “Improved regularization of convolutional neural networks with cutout”, arXiv 2017.
Zhong et al., “Random erasing data augmentation”, arXiv 2017.



Data augmentation — Labels
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• Label Smoothing: Resolve the over-confident problem

• Can be seen as a regularizer

Data augmentation — Labels
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"Rethinking the inception architecture for computer vision." CVPR 2016.



• Deep networks with residual connections

• Deep residual networks can be seen as “Exponential Ensembles of Shallow 
Networks” (Veit et al., 2016)

Data augmentation — Features
32

layer layer layer layer Input batch layer layer Outputs



• Stochastic Depth: randomly drop -th layer with probability  
• Linear decay rule: early layer with low , layer layer with high  

l pl
pl pl

Data augmentation — Features
33



• Stochastic Depth: randomly drop -th layer with probability  
• Linear decay rule: early layer with low , layer layer with high   

• It can be seen as a feature augmentation (randomly dropping intermediate 
features)

l pl
pl pl

Data augmentation — Features
34

layer layer Input batch 
1

layer layer Outputs

layer layer layer layer Input batch 
2 Outputs

layer layer layer Input batch 
3

layer Outputs



• Combination of pairs of examples and their labels 

Data augmentation — Mixed Samples
35

Zhang et al., “Mixup: Beyond empirical risk minimization” ICLR (2018)
Yun et al., “CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features” ICCV (2019)

Mixup input image

Input : 

Label : 

x̃ = λxA + (1 − λ)xB

ỹ = λyA + (1 − λ)yB

CutMix input image

Input : 

Label : 

x̃ = M ⊙ xA + (1 − M) ⊙ xB

ỹ = λyA + (1 − λ)yB

Binary mask



• CutMix performance and analysis

Data augmentation — Mixed Samples
36

Yun et al., “CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features” ICCV (2019)



Do we need more data? Yes 
• ImageNet-21K (aka ImageNet-full dataset)

• Noisy labeling 
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ImageNet-1K

1.28M images
1,000 classes

ImageNet-21K

14.2M images
21,841 classes



OpenImages
• 9M images with human-verified annotations

• Image-level labels (positive/negative), object bounding boxes, object 
segmentation masks, visual relationships, and localized narratives

OpenImages: A public dataset for large-scale multi-label and multi-class image classification, 2017
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JFT-300M
• Google's internal dataset

• 300M images, 375M labels, 18k categories.

• Automatic labeling  Labels will be noisy and inconsistent. 

• Objective: Multi-class Sigmoid loss 

• Loss:  , where   

• Learning by weak (noisy) annotation  Weakly supervised learning

• Will extend to JFT-3B dataset, for multimodal tasks

→

−∑
i

yi ⋅ log ̂yi ̂yi = Sigmoid(zi)

→

Revisiting Unreasonable Effectiveness of Data in Deep Learning Era, ICCV 2017.
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Instagram-3B dataset 
• Meta's internal dataset

• 3.5B images, 17k categories 

• Automatic labels  #hashtag-based categorization

• Objective: Softmax CE Loss with multi-hot labels (which is a sum to 1)
• A label has k non-zero entries of 1/k value (i.e., an image can have multiple hashtags)

• Loss:  , where   

• Learning by weak (noisy) annotation  Weakly supervised learning

→

−∑
i

yi ⋅ log ̂yi ̂yi = Softmax(zi)

→

Exploring the Limits of Weakly Supervised Pretraining, ECCV 2018. 
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So, do we need even more data?
• In summary, 

41
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So, do we need even more data?
• In summary, 
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So, do we need even more data?
• In summary, 
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Web-crawled, 
Unlabeled  

Data 

More than 10B~100B scale

Clean,  
Human-verified 

Data 

Noisy,  
Machine-labeled  

Data

~1M scale ~1B scale

Supervised Learning Weakly-supervised Learning What supervision?

Self-supervised Learning
(Learning from self-labeling)



Self-supervised Learning



Self-supervised learning
• What is self-supervised learning?

• A learning paradigm where the model is trained using labels generated from the data 
itself

• This creates a self-generated problem that the model must solve, encouraging a model 
to understand and represent the input data effectively. 
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Self-supervised learning
• Benefits of self-supervised learning: 

• Beyond labels — Enlarge dataset size (as we have seen in previous slides)
• Beyond task — Mitigate wrong correlations between samples and labels. 
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Self-supervised learning
• Benefits of self-supervised learning: 

• Beyond labels — Enlarge dataset size (as we have seen in previous slides)
• Beyond task — Mitigate wrong correlations between samples and labels. 

https://www.youtube.com/watch?v=_1Cyyt-4-n8 Yann LeCun’s talk
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https://www.youtube.com/watch?v=_1Cyyt-4-n8


Self-supervised learning
• What will the model say? 

48

?



Self-supervised learning
• What will the model say? 
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Self-supervised learning
• Models are lazy (they usually cheat). 

• Models trained by image recognition tasks usually learn spurious correlation 
(shortcut)

• Self-supervised learning can reduce this correlation since there are no labels! 

ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness, ICLR 2019. 
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Self-supervised learning
• Benefits of self-supervised learning: 

• Beyond labels — Enlarge dataset size (as we have seen in previous slides)
• Beyond task — Mitigate wrong correlations between samples and labels. 

• Self-supervision for better representation learning!
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Self-supervised learning — Method
• Generate artificial labels and train models to predict the generated labels. 

• Self-prediction 

• Inter-sample prediction
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Break



Self-supervised Learning

Self-prediction 



Self-prediction
• Apply a transformation or distortion on data.

• Train a model to either restore the original data or identify the transformation.
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Pretext modeling
• Colorization (2016)

• Context Auto-Encoder (2016); inpainting
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Zhang et al., “Colorful image colorization”, ECCV 2016.
Pathak et al., “Context Encoders: Feature Learning by Inpainting”, CVPR 2016.

model

model



• Relative location prediction (2015)

• Solve Jigsaw puzzle (2016)

Pretext modeling
57

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015.
Noroozi and Paolo, “Unsupervised learning of visual representations by solving jigsaw puzzles”, ECCV 2016.

model
1 2 3

4 5

6 7 8

Relative pos: 1

model



• Counting features across grid patches (2017)

• Rotation (2018)
• Predict which rotation is applied (classification among 0, 90, 180, and 270)  

Pretext modeling
58

Noroozi et al., “Representation Learning by Learning to Count”, ICCV 2017.
Gidaris et al., “Unsupervised Representation Learning by Predicting Image Rotations”, ICLR 2018. 

model 270 degree

f( ) = f( )+ f( )+ f( )+ f( )



Pretext modeling (Text)
• Masked language modeling (BERT style)

• Auto-regressive generation (GPT style) 

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NAACL 2019. 
Improving Language Understanding by Generative Pre-Training, 2018. 
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?

?

"The capital of [MASK] is Paris." [MASK]="France"

?

?

"The capital of [MASK]"

"The capital of France [MASK]"

"The capital of France is [MASK]"

[MASK]="France"

[MASK]="is"

[MASK]="Paris"

input=text[:-1] 
target=text[1:]



ImageGPT
• ImageGPT (iGPT) (Chen et al., 2020)   

Generative Pretraining from Pixels, ICML 2020. 
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• Context Auto-Encoder (Pathak et al., 2016)

• Masked Auto-Encoder (He et al., 2022); state-of-the-art performance

Masked image modeling
61

model

model



• Masked Auto-Encoder (MAE) (He et al., 2022)

Masked image modeling

“Masked auto encoders are scalable vision learners” CVPR (2022)
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Transformer
Encoder

Visible patches 
only (efficient)

Transforme
r

Decoder

Attach mask 
tokens

Reconstruct
target image

Input image



Masked image modeling
• SimMIM

• Simple masked image modeling
• Similar to MAE, but no patch-drop

“SimMIM: a Simple Framework for Masked Image Modeling”, CVPR 2022.
“BEIT: BERT Pre-Training of Image Transformers”, ICLR 2022.
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• BEiT
• Similar to MAE, but no patch reconstruction
• Image token classification 



Self-supervised Learning

Inter-sample Prediction 



Inter-sample prediction
• Beyond sample-wise prediction, learn the relationship between samples

• Inter-sample prediction 

65

Sample A

Sample B

Sample C

...

Related?
Not related?



Contrastive learning
• The goal of contrastive representation learning is to learn such an embedding 

space in which similar sample pairs stay close to each other while dissimilar ones 
are far apart.

• Contrastive learning can be formulated as a classification task to classify positive 
(similar) samples from negative (dissimilar) samples.

• But we don’t have positive and negative labels. 

https://lilianweng.github.io/posts/2021-05-31-contrastive/
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Contrastive learning
• InfoNCE (Oord et al., 2018) uses cross-entropy loss to identify the positive 

sample from unrelated noise samples (e.g., random samples). (Remind p.32 in 
lecture 3)  

“Representation learning with contrastive predictive coding” arXiv (2018)
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ℒN = − 𝔼[log
f(xpos, h)

∑N
j f(xj, h) ]

Classify the “future” (positive) 
representation from unrelated negative 

samples

[x1, . . . , xN−1, xpos]

(N-1) negatives + One positive



Contrastive learning with different views
• InfoNCE loss to two or more different views of input data

68

view 1

view 2

Similar

Dissimilar



Contrastive learning with different views
• Gray, RGB, Depth, ... (Tian et al., 2019)

Contrastive Multiview Coding, 2019.
Self-Supervised Learning of Pretext-Invariant Representations, 2019. 
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• Jigsaw transform (Misra et al., 2019)



Contrastive learning
• SimCLR (Chen et al., 2020)

• Generate two views by different augmentations

Chen et al., “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020
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ColorDistort
Cutout

ColorDistort
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Contrastive learning
• SimCLR (Chen et al., 2020)

• Generate two views by different augmentations

• N samples  2N augmented samples →

Chen et al., “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020
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N samples



• SimCLR (Chen et al., 2020)
• Generate two views by different augmentations
• Given one positive pair, other 2(N-1) samples are negative
• InfoNCE loss: 

Contrastive learning

Chen et al., “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020
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ℒ(i,j)
SimCLR = − log

exp(sim(zi, zj)/τ)

∑2N
k=1 1k≠i exp(sim(zi, zk)/τ)

• SimCLR needs a large batch-size (>4K) for performance.



Contrastive learning
• MoCo (He et al, 2020)

• Momentum encoder: 

• Negative samples : samples of previous batches

• Query input 

• Positive sample : augmented sample of input 

•
InfoNCE loss: 

θk ← mθk + (1 − m)θq

xkey
i

q
k+ q

ℒMoCo = − log
exp(q ⋅ k+/τ)

∑N
i=1 exp(q ⋅ ki/τ)

He et al., “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020. 
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• Using queue, decouple # of negative samples from batch-size 
• Going to MoCo-v2, apply strong data augmentation and MLP projection head as in SimCLR 



Evaluation of 
Self-supervised Models



Evaluation of learned representation
• Remind what was representation
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It’s a Dog!

Representation

Classifier:
“Hmm, given those 

features, …”
Colors,

Intensities
Edges, textures Shapes



Evaluation of learned representation
• We have an evaluation train/val dataset (e.g., ImageNet) 

• Method: Linear SVM, k-NN classifier, Linear probing 
• Freeze the representation parts (e.g., encoder, layers except the final layer, …) 
• Extract features of train data 
• Attach a classification layer (e.g., linear layer) and train it 
• Evaluate the classifier on validation data 

• Measure “How good the learned representation is.”

• Contrastive learning shows good performance here
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Evaluation of learned representation
• Not freeze the encoder, fine-tuning them? 🤔 

• We also have an evaluation train/val dataset (e.g., ImageNet) 

• End-to-end fine-tuning
• Attach a classification layer on top of the encoder
• Train the entire model on train data 
• Evaluate the model on validation data 

• Measure “transfer learning performance of the learned representation.” 

• Masked image modeling shows good performance here
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Contrastive learning vs. Masked image modeling

• Contrastive learning (CL) — distinguish positive pair from negatives
• Captures global patterns
• Later layers play a crucial role
• Good at linear probing (well-separated final feature space)

• Masked image modeling (MIM) — reconstruct masked regions
• Captures local patterns
• Early layers play a crucial role
• Good at fine-tuning (well transferrable to vision tasks) 

• Will the harmonization of CL and MIM benefit? Yes! (Park et al., 2023)

Part et al., “What Do Self-Supervised Vision Transformers Learn?”, ICLR 2023
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Self-supervision and 
Model Adaptation



Self-supervision and model adaptation
• Things change after training 

80

At training time At test time



Self-supervision and model adaptation
• Things change after training 

• Need to adapt to test scenarios

81

At training time At test time



Self-supervision and model adaptation
• Model adaptation at the test time 

• Q) How can we adapt (or update) our model at the test time?

Reference: lecture 17 @ https://cs280-berkeley.github.io/ 
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Training data Test data

Online testing scenario

Model training Update model using this! (w/o labels)

https://cs280-berkeley.github.io/


Self-supervision and model adaptation
• Model adaptation at the test time 

• Q) How can we adapt (or update) our model at the test time?

• A) Self-supervised learning 

83

Training data Test data

Online testing scenario

Reference: lecture 17 @ https://cs280-berkeley.github.io/ 

https://cs280-berkeley.github.io/


Self-supervision and model adaptation
• Test-Time Training with Self-Supervision for Generalization under Distribution 

Shifts (Sun et al., ICML 2020)
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Reference: lecture 17 @ https://cs280-berkeley.github.io/ 

https://cs280-berkeley.github.io/


Self-supervision and model adaptation
• Test-Time Training with Self-Supervision for Generalization under Distribution 

Shifts (Sun et al., ICML 2020)
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Distribution shifted test input

Reference: lecture 17 @ https://cs280-berkeley.github.io/ 

https://cs280-berkeley.github.io/


Self-supervision and model adaptation
• Test-Time Training with Self-Supervision for Generalization under Distribution 

Shifts (Sun et al., ICML 2020)

86

Distribution shifted test input

Reference: lecture 17 @ https://cs280-berkeley.github.io/ 

https://cs280-berkeley.github.io/


Self-supervision and model adaptation
• Test-Time Training with Self-Supervision for Generalization under Distribution 

Shifts (Sun et al., ICML 2020)
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Reference: lecture 17 @ https://cs280-berkeley.github.io/ 

https://cs280-berkeley.github.io/


Self-supervised Learning

Video/Audio Pretext Modeling



Self-supervised learning on video

Slide from Yann LeCun
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• Video data adds a temporal (time) axis  More versatile self-supervisions →



Video pretext tasks — Temporal order
• Temporal order verification (Misra et al. 2016, Fernando et al. 2017)

• Shuffle the order and predict 

Misra et al., Shuffle and Learn: Unsupervised Learning using Temporal Order Verification, ECCV 2016
Fernando et al., Self-Supervised Video Representation Learning With Odd-One-Out Networks, CVPR 2017
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Video pretext tasks — Contrastive learning
• Time-contrastive learning

• Multiple viewpoints with video frames

• Positive: same time, different view

• Negative: different time, same view

• (Use triplet loss)

Sermanet et al., “Time-Contrastive Networks: Self-Supervised Learning from Video”, ICLR 2018
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Video pretext tasks — Colorization
• Video colorization (Vondrick et al., 2018)

• Unlike the image-based colorization method (Zhang et al., 2016), uses two frames in 
video—reference frame (colorful) and target frame (gray)

• Task: colorize the target frame given the reference frame
• The model learns to correlate pixels in different frames.

Vondrick et al., “Tracking Emerges by Colorizing Videos”, ECCV 2018
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̂cj = ∑
i

Aijci where Aij =
exp( fi fj)

∑i′￼
exp( fi′￼

fj)

Similarity of  and fi fjWeighted sum



Video pretext tasks — Colorization
• Video colorization (Vondrick et al., 2018)

• Get rich representation ability
• Video segmentation and visual region tracking, without extra fine-tuning.

Vondrick et al., “Tracking Emerges by Colorizing Videos”, ECCV 2018
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Video pretext tasks — Masked modeling
• Video Masked Auto-encoder (Tong et al., 2022, Feichtenhofer et al., 2022) 

• Mask spatiotemporal tokens and predict the dropped tokens. 

Tong et al., “VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training”, NeurIPS 2022
Feichtenhofer et al., “Masked Autoencoders As Spatiotemporal Learners”, NeurIPS 2022
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Audio pretext task — Contrastive learning
• Contrastive learning on audio data (Saeed et al., 2021)

• High similarity between audio clips extracted from the same recording 
• Low similarity to clips from different recordings

Saeed et al., Contrastive Learning of General-Purpose Audio Representations, ICASSP 2021
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Audio pretext task — Masked modeling
• HuBERT (Hsu et al., 2021) and WavLM (Chen et al., 2022)

Hsu et al., “HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units”, 2021.
WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing, 2022
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Conclusion
• What is Representation Learning?

• Supervised Learning

• Self-supervised Learning

• Next class: Multimodal Foundation Model 2 – Multimodal Pre-Training
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Thank You!



Reference materials
• https://cs280-berkeley.github.io/

• https://nips.cc/media/neurips-2021/Slides/21895.pdf
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https://cs280-berkeley.github.io/
https://nips.cc/media/neurips-2021/Slides/21895.pdf

