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Deep learning

Wikipedia says “Deep learning is part of a broader tamily of machine learning

methods based on artificial neural networks with representation learning.”

“Artiticial neural networks were inspired by information processing and distributed

communication nodes in biological systems.”

Multi-layered and structured neural systems are trained with large training data.
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Deep learning triarchy

* Advances in deep learning algorithms with large data are enabled by recently surging
computational power by cutting edge manufacturers, e.g., NVIDIA, Apple.
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Multimodal

In statistics, a multimodal distribution is a probability distribution with two or more

modes. (Wikipedia)
The use of two or more media in a single artifact

Vision and language

Figure credit: https://www.codeproject.com/Articles/5294893/A-Csharp-3D-Surface-Plot-Control NAVER Al LAB



Multimodal deep learning

A feature vector represents each modality using modality-dedicated models.

A joint feature vector should be inferred from the multimodal feature

vectors as input to a classifier.
Then, how do we get the joint representation?

What is the limitation of this thought?

Figure credit: https://www.codeproject.com/Articles/5294893/A-Csharp-3D-Surface-Plot-Control NAVER Al LAB



Visual Turing test

The “imitation game” is a test of a machine's
ability to show intelligent behaviors, which is
indistinguishable from a human.

Visual Turing test centers on machine vision
and language to more deeply evaluate and
interpret (You, Science 2015).

Alan M. Turing
(1912-1954)



Visual question answering

Visual Turing test as a generalization of (possibly) all vision tasks

A representative vision and language benchmark task along with image captioning
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Positioning dataset papers (2021)

7000

5250
Z
.0
s 3500
=

- -

0 - ——— — I
COCO Captions Visual QA MovieQA Visual Dialog Embodied QA

(Chen et al., 2015) (Antol et al., 2015) | (Tapaswi et al., 2016)  (Das et al., 2017)

(Das et al., 2018)

NAVER Al LAB



Positioning dataset papers (2022)
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Positioning dataset papers (2024.09)
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Timeline of popular VQA datasets

2015 2016 2017 2018 2019 2020 2021 2022 2023
VQA :
VQA v2 GQA InfographicVQA PMC.VQA
COCO-QA Visual Genome KVQA VQA-CE .
FMIQA CLEVR VCR ZSF-VQA WHOOPS
KB-VQA TDIUC OK-VQA lconQA |
: : FVQA 2.0
Visual Madlibs TQA TextVQA
TGIF-QA ST-VQA
TallyQA
a a ) ) a )
MovieQA VizWiz DocVQA ChartQA
Visual7W VQA-Med VQA-CP A-OKVQA
SHAPES TVQA PlotQA VIiQuAE
Yin-Yang FVQA LeafQA AVQA
Al2D DVQA KnowlT VQA (@ DAV/@]-
N \_ Y, N
VQA-CP
HowMany-QA
N\ J
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Visually-impaired Korean VQA

* To collect data from the blind people who volunteered to participate in this project.

* We franslated parts of the published VizWiz dataset, which can be well-suited to the
Korean context, and created a complete dataset to tfrain VQA models in Korean.
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Figure 1: Examples of KVQA dataset. The most frequent answers are shown for each question. The
above examples are image-question pairs of Yes/No, Number, Other, and Unanswerable type in order.
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Challenge 2016 (v1.0 real open-endgd)
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Human 83.30
4 40 teams

+3.4% absolute
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Challenge 2018 (v2.0 real open-ended)
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Statistical significance

Shared 2nd place!

Bootstrap samples 500 times
@ 95% confidence
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Challenge 2021 (v2.0 real open-ended)
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Image captioning

The man at bat readies to swing at the A horse carrying a large load of hay and
pitch while the umpire looks on. two people sitting on it.

0 NAVER Al LAB



Multimodal tasks

Feature learning Training Test
Deep learning X X X
Multimodal fusion X, Y X, Y X, Y
Cross modality X, Y X X
Shared representation X, Y X Y

Ngiam et al., ICML 2011 NAVER Al LAB
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Feature learning Training Test
Deep learning X X X
Multimodal fusion X, Y X, Y X, Y
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Multimodal tasks

Feature learning Training Test
Deep learning X X X
Multimodal fusion X, Y X, Y X, Y

Cross modality

Shared representation

Ngiam et al., ICML 2011 NAVER Al LAB



Use-case: SimVLM’s versatility

SimVLM (Wang et al., 2021) “pretrains on large-scale web datasets for both image-

text and text-only inputs.”

Their formulation of PrefixLM is modality-agnostic, where text-only corpora to

compensate for noisy text supervision in web-crawled image-text datasets.

happlly
running a dirt road </s>

tot ottt ot

Transformer Encoder — Transformer Decoder
£ o O T S 1 TS S
00000000000 00O00C0 <s> running a dirt road

Image patch tokens Two brown and white dogs haIOIO"Y

Text tokens NAVER Al LAB



Use-case: SimVLM’s versatility

SimVLM (Wang et al., 2021) “pretrains on large-scale web datasets for both image-

text and fext-only inputs.”

Their formulation of PrefixLM is modality-agnostic, where text-only corpora to

compensate for noisy text supervision in web-crawled image-text datasets.

happlly
running a dirt road </s>

tot ottt ot

Transformer Encoder — Transformer Decoder
bttty bt otototot ot
<s> running a dirt road
Two brown and white dogs happ'ly

Text tokens NAVER Al LAB



Difficulty of multimodal learning

* Each representation of modality should align with the others

+ “Deep” representation helps fo learn joint representation (Ngiam et al., 2011}

Language Vision

Fusion P4
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Four classes of multimodal models

Text Image Text Image Text Image Text Image

b G
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Fusion Fusion Fusion Fusion

Modulation-based
CLIP (Radford et al., 2021) (Perez et al., 2018; VilT (Kim et al., 2021)
Nguyen et al., 2020)

VSE++ (Faghri et al., 2017)
SCAN (Lee et al., 2018)

Reproduced Figure 2 from VilLT (Kim et al., 2021) +0 NAVER Al LAB



Multimodal fusion

Traditional methods include addition (f + g), concatenation (f| g) and multiply (f- g)

Hadamard product after linear embedding is low-rank bilinear pooling (Kim et al., 2017}

2 wixy; = xIWy = xTUVly = 11(U'x o Vy)
i

Cross-attention mechanisms have been developed in multimodal deep learning.

Queries and keys are from different modality.

Contrastive losses (e.g., InfoNCE) tfor selt-supervised learning (Oord et al., 2018)

NAVER Al LAB



Low-rank approximation

The rank of a matrix A is “the dimension of the vector space generated by its

columns,” or “the maximal number of linearly independent columns of A.”

l- - /
N Xxd dX M

NXxXM

The rank is at most d < min(N, M). Roughly speaking, no more than d.

Pirsiavash et al., 2009; Kim et al., 2017 NAVER Al LAB



Eckart—Young—Mirsky theorem

Minimize the matrix error [|A — AHF over A subject to rank(A) < r

The optimal A* = U X VT where the singular value decomposition obtains

A = UXZVT and the subscript r indicates the slice of the first » columns or rows (i.e.,
U, e R™, V. € R"™, and £ € R™). A diagonal matrix X contains the largest

singular values 6y > 0, > - > 0..

The erroris min [|A — AHF = \/6,,2+1 + - + 0,721 where m < n.
rank(A)<r

The proof is easy and informative; try to work it out yourself at least once.

NAVER Al LAB


https://en.wikipedia.org/wiki/Low-rank_approximation

Low-rank “tensor” approximation

Canonical polyadic (CP) decomposition extends the previous idea:

r
argmin ||A — Z a;°ob;ec,
i=1

a,b,c

where o denotes outer product, A € R™" a € R™, b € R”, and ¢ € R*.

Tucker decomposition makes a tensor into a set of smaller matrices and one small core
tensor. It is named after Ledyard R. Tucker; but it goes back to Hitchcock (1927).

NAVER Al LAB



Cross-attention mechanisms

“Show, Attend and Tell (Xu et al., 2015)"” proposed soft and hard attentions:

Hard attention uses a multinoulli distribution parameterized by weights.

While soft attention is deterministic and a convex combination of values.

Co-attention or dual-attention (Lu et al., 2016; Nam et al., 2017; Kim et al., 2018)

Alternating query and key to get a joint representation from different views

BAN (Kim et al., 2018) is proposed to combine two different views simultaneously.

Transformer (Vaswani et al., 2017; Yu et al., 2019}

Guided attention for multimodal learning

Known for parameter-efficient, multi-layer stackable, and better performance.

NAVER Al LAB



Preliminaries on attention networks

The Trinity of attention: Query, Key, and Value. Roughly speaking,
Query stores fask information
Key stores information to search

Value stores information to use associated with the Key

Define a multinoulli distribution to combine values
Let V € RN, 0 € R % and K € R?*% where N and d, are feature sizes. (No batch)

¢ and p are the numbers of features (or tokens).

KT
P(V|0O,K) = softmaX(Q ) € R”? [Quiz] what 1/d is for?

dy

NAVER Al LAB



Multi-head attention

Multi-head attention is widely used for its parsimonious.

Query and key are embedded by a low-rank matrix where the (at-most) rank is divided by
the number of heads.

KTWKiWE?iQ
Ve
MHA(tt(Q,K, V) = WT - ||, MHAt,(Q, K, V)

)

MHALtt,(Q, K, V) = W{,_V : softmax(

Where || denotes concatenation and d, = dy;/g, hidden size d}; is divided by the number

of attention heads ¢ to keep the total number of parameters.

Roughly speaking, it's a mixture of multinoulli distributions.

NAVER Al LAB



Hard, soft-attention and variations

Hard attention is stochastic and a sampling-based approach
Monte Carlo sampling (Xu et al., 2015}
Thesholding (Malinowski et al., 2018)
Gumbel-softmax (Jang et al., 2017)

Sparse attention asserts to be a sparse distribution.
Sparse transtormers (Child et al., 2019)

Adaptively sparse transformers (Correia et al., 2019)

Combining hard and soft attentions (Gang et al., 2022)

NAVER Al LAB



Linear attention

QK computation in the self-attention has O(n?) complexity in sequence length 1, which

becomes prohibitive for long inputs.

Replace the exponential softmax kernel with a feature map o( - ) such that
Att(O, K, V) « G(Q)(G(K)TV), reducing the cost to O(n).

Performer (Choromanski et al., 2020): Introduced random feature maps to approximate
the softmax kernel with variance bounds, setting the foundation for linear transformers.

Recent developments (e.g., SANA, 2024): Explore deterministic kernelizations without
random features, integrating Mix-FFN with a new linear DiT, which integrates 3x3
depth-wise convolution into MLP to aggregate the local information of tokens.

NAVER Al LAB



Time complexity of linear attention

Let a positive feature map o, and omitting embeddings for its simplicity, so that:

o(Q)(o(K)TV)
o(Q)(o(K)T1) + ¢

- The complexity of the numerator is O(d,¢)N+pd, N), while the denominator is

O(d,¢ + pd,) using the reordering trick for the row-sum. For the self-attention, we
denote n := ¢ = p, and this makes O(n).

softmax(QK'") - V ~

However, the softmax aftention demands O(pd,¢), which makes O(n?).

+ &¢ The implementation of causal attention may need to use torch.cumsum for

efficient computation of row-sum.

NAVER Al LAB



Linear vs. softmax

Convexity guarantee: a valid convex combination requires w; > 0. Linear attention

may exploit ReLU, Softplus, or ELU+1 for o.

In linear attention, stabilize the denominator by always adding a small amount €.

Linear attention is scale-invariant, while softmax attention is translation-invariant®. This

is why RMSNorm or LayerNorm is used to keep scales tame in the linear attention.

In softmax, exponential contrast makes them more peaked.

Softmax never yields exact zeros. When x; = 0 in linear attention, it makes it lie on the

simplex boundary (of convex combination). = winner-take-all

NAVER Al LAB



Bilinear attention networks

Unlike co-attention, BAN learns a joint representation with two views, simultaneously.

A joint probability distribution is defined as:
A = sof’rmax(((l -ph oXTU> VTY> e RP*¢
A joint representation from two groups of value tokens:
f=t((x10)1a(v1v)) € RY
* Nested structure of low-rank bilinear pooling

+ Each attention weight logit is low-rank bilinear pooled as A;; = pT((UTXi) o (VTX]-)).

p @
. Each joint feature is bilinear pooled as f, = Z Z ﬂlj()gTUk)(VgIG).
i=1 j=1

NAVER Al LAB



Co-attention vs. bilinear attention

B ) B
. 0 oo ——— I —
= Query A . C Output
Key & Value A Attention - Key & Value A Attention
| 5 oo
. Query B

Co-attention (Lu et al., 2016)  Key & Value B Attention

Bilinear attention (Kim et al., 2018)

-... ...- .. =
. . ndl 1] | Bl
.... .... - .
Key/Query Attention Attention Value Y Diagonal Output

Key/Query Value X
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VQA visualization

Q. What color are the pants of the guy skateboarding?

what
color

are

the
pants

of
the
guy
skateboarding

1 The box order is sorted for visualization.

Question

123 45 67 8 92 101112131415161718 19 20

Bilinear attention map &/
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VQA visualization

Q. What color are the pants of the guy skateboarding?

what
color

are

the
pants

of
the
guy
skateboarding

Question

12 3 45 67 8 92 1011121314151617 18 19 20

Bilinear attention map &/
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Transformers with guided-attention

A curation of self-attention, guided-attention, and MLP with deep learning perks

Deep modular co-attention networks (Yu et al., 2019), and a reference (Liu et al., 2022)

z 1808

z 1808

x 1808 vasil 8008

Self-attention block Guided-attention block
Yu et al., 2019 -0 NAVER Al LAB




Layer Normalization

Ba et al. (2016) proposed a layer that:
X — E|[X]
y —
\/Var[x] + €

v+ p

y and f are learnable affine fransform parameters.

The normalization step removes the statistical bias in a batch while recovering the

global statistics using y and f.

The normalization is applied to the last few dimensions (a design choice).

NAVER Al LAB



Contrastive learning

InNfoNCE (Oord et al., 2019) as a contrastive loss is defined as:

| f(xia h) . . . .
Zv=—[E|log where (x;, h) is a positive pair.
i Zj f(xja h)'
Note that regardless of the number of negative samples N — 1 ,
x| h
f*(x;, h) o POl ) (using Bayes’ theorem)
p(x;)

where * denotes approximation.

* A negative InfoNCE can approximate’ a lower bound of mutual information:

I(x;; h) > log(N) — £

NAVER Al LAB



InfoNCE as contrastive loss

We choose f(x, h) = exp(xTh) as an exponential of cosine similarity.

Theoretically, a larger N is better. Be careful to multi-gpu implement: 1) all_gather

does not back-propagate’, 2) DDP calculates the mean of gradients across all
processes, not summation.

Cosine similarity  softmax

B
O = ..
.
Diagonal & mean

Language Vision

Thitps: //amsword.medium.com/gradient-backpropagation-with-torch-distributed-all-gather-9t3941a38118 NAVER Al LAB



GatherLayer in PyTorch

import torch
import torch.distributed as dist

class GatherLayer(torch.autograd.Function):

“"""GatherLayer gathers input tensors from all processes.

@staticmethod @staticmethod
def forward(ctx, input): def get_rank_slice(batch_size: int) —> slice:
ctx.save_for_backward(input) """Get a slice to get a portion of gathered tensor corresponding to the
if dist.is_initialized(): current rank.
output = [
torch.zeros_like(input) for _ in range(dist.get_world_size()) Args:
] batch_size (int): Local batch size
dist.all_gather(output, input)
else: ‘k\\\ . . Returns:
output = [input] fOrWGl’dlng aﬁer gafhermg slice: slice for the current rank

return tuple(output)
rank = dist.get_rank() if dist.is_initialized() else 0
@staticmethod return slice(rank x batch_size, (rank + 1) *x batch_size)
def backward(ctx, *grads):
input, = ctx.saved_tensors

if dist.is_initialized():
dist_ops = |
dist.reduce(grads[il, i, async_op=True)
for 1 in range(dist.get_world_size())]

for op in dist_ops:
op.wait()

grad_out = torch.zeros_like(input)
grad_out[:] = grads[dist.get_rank() if dist.is_initialized() else 0]
return grad_out v\\

backward with the grad of the current batch

The asynchronous operations will maintain the order. NAVER Al LAB



E-CLIP

+ Large-scale vision-language representation learning in e-commerce (Shin et al., 2022}

* NAVER Shopping and Al Lab collaborate to build a multimodal backbone for diverse
downstream ftasks, i.e., category classification, attribute extraction, product matching,

product clustering, and adult product recognition.

Apple iPhone 13 Pro 256GB
k 2,396 reviews

L. 8. 8.8 8 |

From left, query-based search,
filter-based search,
NAVER Al LAB

and price comparison.



Data preprocessing

* We tilter the 1.5B-scale database to make 330M text-image pairs, removing invalid,

duplicated, and inappropriate products to our customer policy.

Data preparation Modeling subsystem

Front-end Retrieval passsas
server system .
Downloader

/,/
Product ’ .

Affiliate
Sellers |information data E LI 111_1.
Stores é i ()

Validator

ML modeling process

Data Model > Model
preprocessing training evaluation

NAVER Shopping inference server

Customer o
Distributed

“Find apple” database

1.5B products

Category
recognition
Product . matching
extraction

Comparator

Data management platform

Model
storage

NAVER Al LAB



Multimodal metrics




Multimodal generative models

Multimodal generative models generate an output in a modality conditioned on the
other modal input. (Although there are its variants.)

Text-to-image generation (text = image) and image captioning (image — fexi)

Multimodal representation learning maps two different modalities where the deep
neural networks act as a mapping function.

NAVER Al LAB



Metrics for text-to-image generation

Text-to-image generation
Inception Score (Salimans et al., 2016)
Fréchet Inception Distance (Heusel et al., 2017)
R-Precision (Xu et al., 2018), CLIP-R-Precision (Park et al., 2021)
Semantic Object Accuracy (YOLOv3) (Hinz et al., 2020)
Caption generation (fake — caption = captioning metrics) (Hong et al., 2018)

CLIP Similarity

NAVER Al LAB



Metrics for image captioning

Reference-only image caption evaluation

BLEU-4 (Papineni et al., 2002): a precision between a candidate and references
ROUGE-L (Lin, 2004): a sort of recall

METEOR (Banerjee and Lavie, 2005): a word-level alignment

CIDEr (Vedantam et al., 2015): n-gram tf-idf weighting and stemming

SPICE (Anderson et al., 2016): a semantic parser and scene graph

BERTScore (Zhang et al., 2020): a tuned BERT

NAVER Al LAB



Metrics for image captioning (Cont’d)

Reterence+image caption evaluation
TIGEr (Jiang et al., 2019): a pretrained SCAN model (Lee ef al., 2018}
ViLBERTScore-F (Lee et al., 2020): a pertained ViLBERT (Lu ef al., 2019}
RefCLIP-S (Radford et al., 2021)

Reference-free evaluation

Usually for other generation tasks, summarization and dialog
VIFIDEL (Madhyastha et al., 2019): an object detector-based for a fixed object vocabulary
CLIP-S (Radford et al., 2021)

NAVER Al LAB



Rank correlation — metrics for metrics

Pearson r correlation

Assume normal distribution, linearity, homoscedasticity'.

Spearman rank correlation

Non-parametric, no assumption about the data distribution, appropriate for ordinal, monotonically

related to the other variable. One of tactors is the rank ditference of corresponding variables

Kendall rank correlation ¥
Non-parametric, considering all pairings
Spearman and Kendall are not dependent upon the granularity of the integers.

" ..confidence intervals for Spearman’s rs are less reliable and less interpretable than confidence
intervals for Kendall's T-parameters...” (Kendall & Gibbons, 1990)

NAVER Al LAB


https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/correlation-pearson-kendall-spearman/

Mutual Information Divergence



Representation measurement

How to measure the “aligned” multimodal representations?

In information theory, the mutual information of two random variables measures the

mutual dependence between the two variables.

It quantities the information gain about one random variable by observing the other.

Viewing the representations as random variables, we measure the quantity of how

much they share the multimodal information.

NAVER Al LAB



Information entropy

The entropy of a random variable quantities the average level of uncertainty or
information associated with the variable's potential states or possible outcomes.

Let a random variable X € y and the probability Py : y — [0, 1]. The entropy is:

H(X) = — ) Py(0)log Px(x) = E,c,[ — log Py(x)]

XEy
Claude Shannon introduced the concept of 1 /’_\\\
information entropy in his 1948 paper / \
“A Mathematical Theory of Communication.” 03 // \\
/ \

0 Pror> 1) NAVER Al LAB



Entropy definition

*Information entropy quantifies information defined as:
H(X) = — Z Py(x)log Py(x)

* Mutual information measures the mutual dependence between two variables:

N Pyy(x,y)
[(X;Y) = Zy: zx: Pxy(%, y ﬂog( PX)(Z)Py(Y) )

- For the continuous random variables,

o Pxy(x,y)
I(X;Y) = L L Pyy(x, y)log( PrOPYY) )dxdy

NAVER Al LAB



Gaussian mutual information

* The general multivariate form of Gaussian distribution for a random D dimensional
vector x can be written as:

] IR

* The Gaussian mutual information is reduced to:

. l det(Xy) det(Zy)
X1 =3 log( det(Z,) )

where Z denotes the concatenation of X and Y.

NAVER Al LAB



Point-wise mutual information (PMI)

For sample-wise evaluation, we use PMI defined as:
Lo ) 2
PMI(x;y) = I(X; Y) + > (Di(x) + Di(y) — Di/(2))

where D7 (x) is the squared Mahalanobis distance (SMD) parameterized by i, and Z.

Diy(x) = (x — ) = (x — py)

* The MI is from the normalization terms of the Gaussian distributions, and the SMDs

are from the exponential terms in the previous slide’s equation.

- Notice that the expectation of the SMD with respect to samples is D tor x and y, and
2D tor z = [x;].

NAVER Al LAB



Mahalanobis distance

* The Mahalanobis distance is a measure of the distance between a point and a
probability distribution (Mahalanobis, 1936).

- It is a multivariate generalization of the square of the standard score*: z = (x — u)/o.

Diy(x) = (x — ) =5 (x — pay)

e

NAVER Al LAB



Expectation of SMD

By the way, the expectation of the squared Mahalanobis distance 1s the dimension of samples, D).

E,x) D3 (x) = %tr(XTZng) = %tr(ZngXT) =tr(Z; ' Ex) =tr(Ip) =D  (13)

where X € RP*V is the samples, [p € R”*? is the identity matrix. We use the cyclic property of
trace where tr(ABC') = tr(BC'A). Therefore, the second term reduces to zero as follows:

1 1
5 Ep(ey) [Py (%) + Dy (y) = Diy(2)] = 5 (D + D —2D) = 0. (14)

NAVER Al LAB



Do CLIP features follow a Gaussian?

CLIP’s embeddings are L2-normalized to lie on the unit hypersphere.

To separate positives from negatives in the InfoNCE, the model benetits if negatives

are spread out evenly (Wang & Isola, 2020).

In high dimensions, a normalized Gaussian vector is uniformly distributed on the
sphere. So, InfoNCE indirectly drives embeddings toward behaving like samples from

an isotropic Gaussian, normalized.

Gaussians have the largest entropy among all probability distributions with mean and

variance constraints. The most unbiased choice.

NAVER Al LAB



Mutual Information Divergence (MID)

Kim et al. (2022) proposed the expectation of PMI w.r.t. the evaluating sample (%, ),

measuring the divergence from the ground-truth or reference samples (X, Y).

It is the negative cross-mutual information (Bugliarello et al., 2020) for Gaussian.

. 1 A A )
= c0)-aPMIE P) = 10 Y) + ~Eiso [DL(%) + D) — Di(2)]

where (X, y) denotes a pair of evaluating samples, respectively, and Z = [X; V]. Here,

D: /(%) is parameterized by i, and Xy, the reference statistics.

* They denoted this as Mutual Information Divergence (MID), comparable to the FID.
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* The expectation of SMD w.r.t. (X,

Bias and variance decomposition

The expectation of PMI with respect to evaluating samples needs to calculate the expectation of three
terms of the squared Mahalanobis distances (SMD) with respect to the evaluating sample x. With a

notation of X € RP* for evaluation samples, we can decompose the expectation of SMD with two
terms of bias and variance as follows:

Ex| D3 (X)] = %tr((fi — i 1) TS (X — 1y 1)) (16)

— %tr(z;(f{ — 1 1T) (X — pux 17)T) (1'7)

1 A
= (S (XXT = Nugl + N (s — 1) (s = 1)) ) (18

= tr (S (B + (1 — 1) (15 — 1) )) (19)
= (ux — px)TEL (s — px) + t0(25 ' Ex) (20)
= (s — ) T2 (e — pix) + (3871 8g) — tr(27 ' 5x) + (27 Ey) (21

— (:ufc — MX)TZ; (:ufc — :ux) + tr(zx (25( — ZX)) + D

where 1 € R¥ is a vector of ones. Remind that the expectation of SMD is D when the evaluating
samples x are following the distribution of x in Equation 13. However, the above equation shows
that if the mean or covariance of x deviates from x, the result may be smaller or larger than D.

y) can be decomposed into bias and variance.
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Relation to KL divergence

The proposed method MID 1s related to Kullback-Leibler divergence (or relative entropy). Let
No (o, o) and Nq(p1, 1) are two multivariate normal distributions having the same dimension of
D, then the Kullback-Leibler divergence between the distributions 1s as follows [47]:

1 det X
Dy (No [[ N1) = 5 (tl" (271 (S0 = 1)) + (41 — o) B7" (i1 — pro) + log (d; Z(l))) -

Using the above equation and Equation 22, we rearrange Equation 12 as follows:
Ex,5)~oPMI(X;y) =I(X;Y) + Dx(p(x) || p(x)) + D (p(¥) || p(y)) — Dxe(p(2) || p(2))

=508 (o) 108 (Gers) ~ 108 (s @
=I(X;Y) + Dx(p(x) || p(x)) +DKL( ) || () — DxL(p(2) || p(2))
1 det 2« det 2y det 25 det 2y
(s, ) e (T )

— — log (24)

det X2, det X5
—I(X Y) + Dxo(p(%) || p(x)) — Dxo(p(2) || p(2)) (25)

where Dxy (p(¥) || p(y)) = 0 since y and y are the same condition evaluating generations.
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The proposed method MID 1s related to Kullback-Leibler divergence (or relative entropy). Let
No (o, o) and Nq(p1, 1) are two multivariate normal distributions having the same dimension of
D, then the Kullback-Leibler divergence between the distributions 1s as follows [47]:

Dxr (No || N1) = % (tl” (71 (Z0 = 21)) + (11 — po) ' B71 (11 — po) + log (det Zl)) -

det EO

Using the above equation and Equation 22, we rearrange Equation 12 as follows:
E(x,5)~0PMI(x;y) =I(X5Y) + Dxr(p(%) || p(x)) + DxrL(p(¥) || p(y)) — Dxr(p(2) || p(2))

1 det >« det 2y det >,
_ - _ 0
Q(IOg(de n) +1lo (de s ) log(detzi)) (23)

—I(X Y) + Dx(p(X) || p(x)) +DKL( ¥) || p(y)) — DxL(p(2) || p(2))
(detZ det2y ) 1 Og(detE;(detZy)

2 \ det X, det X5
=I(X;Y) + Dx(p(X) || p(x)) — Dxo(p(2) || p(2)) (25)

Eliminate the Ml of references

(24)

where Dxy (p(¥) || p(y)) = 0 since y and y are the same condition evaluating generations.
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Human-free judgments

For a given GT caption, we collect four images with a 1-4 scale judgment.
4: The real image aligned with the given GT caption
3: a generated image from the GT caption
2: a generated image from a FOIL caption

1: a random genera’red Image People riding bicycles down

the road approaching a
Assumptions A

Generated image is not better than real image.
Generated image from a FOIL caption is not better than the one from the GT caption.

A random image is not better than the generated images from the GT or FOIL captions.
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Score distributions

Frequency

Frequency

4K
- Real - Fake
3K — Foiled Fake == Misaligned Fake
2K
1K
200 175 150 -125 -100 -75 -50 25 0 25 50 75
Point-wise Mutual Information
4K
3K
2K
1K

-10.5 -10.45 -10.4 -10.35 -10.3 -10.25 -10.2 -10.15 -10.1 -10.05

InfoNCE

4K
3K
2K
1K

4K
3K
2K
1K

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
OFA-Captioning+CLIP-S
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CLIP-S

Judgment correlations for each metric can be found in Table 1 (LAFITE) and 8 (VQ-Diffusion).
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Score distributions (cont’d)

Frequency

Frequency

4K
3K
2K
1K

4K
3K
2K
1K

Real —= Fake
— Foiled Fake Misaligned Fake
200 175 150 -125 -100 -75 -50 25 O 25 50 75
Point-wise Mutual Information
105 -10.45 -104 -10.35 -10.3 -10.25 -10.2 -10.15 -10.1 -10.05
InfoNCE

Metrics’ overfitting to fake image can be problematic. (Dinh et al., 2021)

4K
3K
2K
1K

4K
3K
2K
1K

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
OFA-Captioning+CLIP-S
0.1 O 0.3 04 0.5 0.6 0.7 0.8 0.9
CLIP-S
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Human evaluation for text-to-image models

The human judgment correlation only for the fake images from GT caption, which is
more ditficult than the previous generated benchmark.

—
w

— |
— |

O

N

Kendall tau-c correlation

On

CLIP (ViT-B/32) CLIP (ViT-L/14)

B MDD B InfoNCE B CLIPS B CLIP-R-Precision B OFA-Captioning+CLIP-S I SOA*

All results are statistically significant (p < 0.001). Table 2 for more details. *SOA used YOLO-v3. NAVER Al LAB



Human evaluations

Flickr8K-Expert Human Judgment Correlation

Kendall tau_c Flickr8K-CF Human Judgment Correlation
BLEU-1 32.3
Kendall tau_b
BLEU-4 30.8
ROUGE-L 32.3 BlLE 16.9
BERT-S (RoBERTa-F) 39.2 CIDEr 24.6
METEOR 41.8 METEOR 22.2
CIDEr 43.9 ROUGE-L X
SPICE 44.9
SPICE 24.4
LEIC (tb) (Cui et al. 2018) 46.6
BERT-S++ (Vi et al. 2020) 46.7 AR (ROBHARENT, 22.8
TIGEr (jiang et al. 2019) 49.3 LEIC 29.5
NUBIA (Kane et al. 2020) 495 CLIP-S (no refs) 34.4
VILBERTScore-F (Lee et al. 2020) 50.1 RefCLIP-S 36 4
CLIP-S f 51.2
(no refs) MID (ours) 37.3
RefCLIP-S 53.0
MID (ours) 54.9
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Human evaluations

Pascal-50S
HC HI HM MM Mean
Length-bias 51.7 52.3 63.6 49.6 54.3
BLEU-4 60.4 90.6 84.9 54.7 72.6
SPICE 63.6 96.3 86.7 68.3 78.7
METEOR 63.8 97.7 93.7 65.4 80.1
ROUGE-L 63.7 95.3 92.3 W 78.1
CIDEr 65.1 98.1 90.5 64.8 79.6
BERT-S (RoBERTa-F) 65.4 96.2 93.3 61.4 79.1
TIGEr 56.0 99.8 92.8 Zw. 80.7
ViLBERTScore-F 49.9 99.6 93.1 75.8 79.6
BERT-S++ 65.4 98.1 96.4 60.3 80.1
CLIP-S (no refs) 56.5 99.3 96.4 70.4 80.7
RefCLIP-S 64.5 99.6 95.4 72.8 83.1
MID (ours) 67.0 99.7 97.4 [X: 85.2

FOIL
1-ref 4-ref
Length-bias 50.2 50.2
BLEU-4 66.5 82.6
METEOR /8.8 85.4
ROUGE-L 71.7 79.3
CIDEr 82.5 90.6
SPICE /5.5 86.1
BERT-S (RoBERTa-F) 88.6 92.1
CLIP-S (no refs) 87.2 87.2
RefCLIP-S 91.0 92.6
MID (ours) ?0.5 90.5
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FOIL visualization

FO: A tall book tower with FO: Some people a chair FO: Large bowls of broccoli FO: a giraffe grazing on grass
people walking down a city some bananas and plastic bunches being examined by a in an open field.

street. (CLIP-S/RefCLIP-S/ cups. (.747/.832/8.63) female buyer. (.774/.811/11.8)  (.707/.747/-4.89)
PMI=.737/.804/16.9) GT: Some people a table GT: Large bowls of banana GT: A zebra grazing on grass
GT: A tall clock tower with some bananas and plastic bunches being examined by a in an open field.

people walking down a city cups. (.756/.843/12.0) female buyer. (.761/.815/9.61) (.718/.821/38.6)

street. (.738/.806/20.0)

The first two columns show the corrected examples, while the third column shows an example that CLIP-S and MID failed to detect.

RefCLIP-S directly exploits the reference captions where the counterpart of the foiled word appears. One of the references of the
third example was that ““a woman is picking bananas from a basket.”

The fourth example shows that MID can be negative for unlikely samples since it is based on the definition of ditferential entropy.
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Robustness toward domains

Randomly shuftled text-image alignments to see the change of scores. Narrow
domains (e.g., CUB and CelebA) have small changes for the CLIP scores.

1.0

0.8

0.6

0.4

0.2

CLIP Score

- COCO
—| == LN-COCO
MM-CelebA-HQ

0 0.10.2030.4050.60.70.809 1

Shuffling ratio

60
50
40
30
20
10

Mutual Information

CUB

COCO
LN-COCO
MM-CelebA-HQ

0 0.10.20.30.4050.60.70.809 1

Shuffling ratio
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Robustness toward domains

Randomly shuftled text-image alignments to see the change of scores. Narrow

domains

However, mutual information gives the better normalized scores across various

domains

1.0

0.8

0.6

0.4

0.2

have small changes for the CLIP scores.

CLIP Score

CUB

COCO
LN-COCO
MM-CelebA-HQ

0 0.10.20.30.4050.60.70809 1

Shuffling ratio

Mutual Information

- CUB

- COCO

— LN-COCO
MM-CelebA-HQ

0 0.10.20.30.4050.60.70809 1

Shuffling ratio
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Robustness toward CLIPs

LAFITE (Zhou et al., 2021) used textual and visual encoders of the pre-trained CLIP
ViT-B/32, VQ-Diftusion (Gu et al., 2021) used text encoder, while DM-GAN (Zhu et

al., 2019) used none. GLIDE (Nichol et al., 2021) used their noised ViT-L CLIP.

Notice that InfoNCE and CLIP-R-Precision are related to contrastive training loss.

Although CLIPs impact on the performance of metrics, MID is the most stable metric.

Normalized Score

N
N = O =N W

LAFITE

S—

RN101  ViT-B/32 ViT-B/16 ViT-L/14

VQ-Diffusion

DM-GAN

N
N = O =N W

N
N = O =N W

S

S——

N
N =R O RN W

GLIDE

RN101  ViT-B/32 ViT-B/16 ViT-L/14 RN101 ViT-B/32 ViT-B/16 ViT-L/14 RN101 ViT-B/32 Vil-B/16 Vil-L/14

== MID =— CLIP-S =— CLIP-R-Precision

InNfoNCE == Caption
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Representation diversity

The covariance matrix of features can be the ground for representation diversity.

If the representations X € R"*" are unbiased (mean is zero) and |12-normalized, the

sum of all eigenvalues {4.} of the covariance matrix is one. The proof is as follows:

D Ay =1tr(Z) = tr(XXT/N) = |

where .. = 1/N due to the definition of 12-normalization.

And, since X is (semi-)positive definite, 1. > 0. So, using the eigenvalues, we can

define the probability distribution over dimensions (Friedman & Dieng, 2022).
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Representation diversity (Cont’d)

The entropy of eigenvalues gives you the sense of feature diversity.

The higher entropy is the more diversity, vice versa.

For the multimodal representation pairs, we may use the joint (concatenated) features

to get the covariance matrix.

The Vendi Score (Friedman & Dieng, 2022) measures the feature diversity using the
below definition:

F
VS(x(, ==+, Xy) = €Xp (— Z A;1log /ll-)
i=1
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Remarks

Cross-modality zero-shot capability is worth to explore.

Vision-language joint representation learning is moving from multimodal fusion to

vision-language pre-training thanks to computing power and big data.

We can measure the multimodal representations using Gaussian feature assumption

in aspect of multimodal alignment and their diversity.
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“The only thing that overcomes hard luck is hard work.”

—Harry Golden



