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Deep learning

• Wikipedia says “Deep learning is part of a broader family of machine learning 
methods based on artificial neural networks with representation learning.” 

• “Artificial neural networks were inspired by information processing and distributed 
communication nodes in biological systems.” 

• Multi-layered and structured neural systems are trained with large training data.
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Deep learning triarchy

• Advances in deep learning algorithms with large data are enabled by recently surging 
computational power by cutting edge manufacturers, e.g., NVIDIA, Apple.
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• In statistics, a multimodal distribution is a probability distribution with two or more 
modes. (Wikipedia) 

• The use of two or more media in a single artifact 

• Vision and language

Multimodal

Figure credit: https://www.codeproject.com/Articles/5294893/A-Csharp-3D-Surface-Plot-Control
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• A feature vector represents each modality using modality-dedicated models. 

• A joint feature vector should be inferred from the multimodal feature  
vectors as input to a classifier. 

• Then, how do we get the joint representation? 

• What is the limitation of this thought?

Multimodal deep learning

Figure credit: https://www.codeproject.com/Articles/5294893/A-Csharp-3D-Surface-Plot-Control



• The “imitation game” is a test of a machine’s 
ability to show intelligent behaviors, which is 
indistinguishable from a human. 

• Visual Turing test centers on machine vision 
and language to more deeply evaluate and 
interpret (You, Science 2015).

Visual Turing test
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Alan M. Turing 
(1912-1954)



Visual question answering

• Visual Turing test as a generalization of (possibly) all vision tasks 

• A representative vision and language benchmark task along with image captioning

Credit: visualqa.org
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AI System bananas

What is the mustache  
made of?



Positioning dataset papers (2021)
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Positioning dataset papers (2024.09)
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Timeline of popular VQA datasets

Ishmama et al., 2023
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2015 2016 2017 2018 2019 2020 2021 2022 2023

VQA 
COCO-QA 

FM-IQA 
KB-VQA 

Visual Madlibs

MovieQA  
Visual7W 
SHAPES 
Yin-Yang 

AI2D

VQA v2 
Visual Genome 

CLEVR 
TDIUC 
TQA 

TGIF-QA

VizWiz 
VQA-Med 

TVQA 
FVQA 
DVQA 

VQA-CP 
HowMany-QA

GQA 
KVQA 
VCR 

OK-VQA 
TextVQA 
ST-VQA 
TallyQA

DocVQA 
VQA-CP 
PlotQA 
LeafQA 

KnowIT VQA

InfographicVQA 
VQA-CE 
ZS-F-VQA 
IconQA

ChartQA 
A-OKVQA 
ViQuAE 
AVQA 

CD-VQA

PMC-VQA 
SlideVQA 
WHOOPS! 
FVQA 2.0



Visually-impaired Korean VQA

https://sktbrain.github.io/KVQA
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• To collect data from the blind people who volunteered to participate in this project. 

• We translated parts of the published VizWiz dataset, which can be well-suited to the 
Korean context, and created a complete dataset to train VQA models in Korean.



Challenge 2016 (v1.0 real open-ended)
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Challenge 2018 (v2.0 real open-ended)
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Statistical significance
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Challenge 2021 (v2.0 real open-ended)
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Image captioning
18

The man at bat readies to swing at the 
pitch while the umpire looks on.

A horse carrying a large load of hay and 
two people sitting on it.



Multimodal tasks

Ngiam et al., ICML 2011

19

Feature learning Training Test

Deep learning X X X

Multimodal fusion X, Y X, Y X, Y

Cross modality X, Y X X

Shared representation X, Y X Y
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Use-case: SimVLM’s versatility

• SimVLM (Wang et al., 2021) “pretrains on large-scale web datasets for both image-
text and text-only inputs.” 

• Their formulation of PrefixLM is modality-agnostic, where text-only corpora to 
compensate for noisy text supervision in web-crawled image-text datasets.

22
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Text tokens

Image patch tokens

<s> running         on      a     dirt   road
happily

running         on      a     dirt   road  </s>
happily
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Difficulty of multimodal learning

• Each representation of modality should align with the others 

• “Deep” representation helps to learn joint representation (Ngiam et al., 2011)

24

Language Vision

Fusion



Four classes of multimodal models

Reproduced Figure 2 from ViLT (Kim et al., 2021)
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Text Image

Fusion

Text Image

Fusion

Text Image

Fusion

Text Image

Fusion

VSE++ (Faghri et al., 2017) 
SCAN (Lee et al., 2018)

CLIP (Radford et al., 2021)
Modulation-based  

(Perez et al., 2018;  
Nguyen et al., 2020)

ViLT (Kim et al., 2021)



Multimodal fusion

• Traditional methods include addition ( ), concatenation ( ) and multiply ( ) 

• Hadamard product after linear embedding is low-rank bilinear pooling (Kim et al., 2017) 

  

• Cross-attention mechanisms have been developed in multimodal deep learning. 

• Queries and keys are from different modality. 

• Contrastive losses (e.g., InfoNCE) for self-supervised learning (Oord et al., 2018)

f + g f |g f ⋅ g

∑
ij

wijxiyj = x⊺Wy ≈ x⊺UV⊺y = 1⊺(U⊺x ∘ V⊺y)
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Low-rank approximation

• The rank of a matrix  is “the dimension of the vector space generated by its 
columns,” or “the maximal number of linearly independent columns of .”

A
A

Pirsiavash et al., 2009; Kim et al., 2017

27

N × d d × M N × M

The rank is at most . Roughly speaking, no more than .d ≤ min(N, M) d



Eckart–Young–Mirsky theorem

• Minimize the matrix error  over  subject to  

• The optimal  where the singular value decomposition obtains 
 and the subscript  indicates the slice of the first  columns or rows (i.e., 
, , and ). A diagonal matrix  contains the largest 

singular values . 

• The error is    where . 

• The proof is easy and informative; try to work it out yourself at least once.

∥A − Â∥F Â rank(Â) ≤ r

Â⋆ = UrΣrV⊺
r

A = UΣV⊺ r r
Ur ∈ ℝm×r Vr ∈ ℝn×r Σr ∈ ℝr×r Σr

σ1 ≥ σ2 ≥ ⋯ ≥ σr

min
rank(Â)≤r

∥A − Â∥F = σ2
r+1 + ⋯ + σ2

m m ≤ n

Eckart & Young, 1936; https://en.wikipedia.org/wiki/Low-rank_approximation
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https://en.wikipedia.org/wiki/Low-rank_approximation


Low-rank “tensor” approximation

• Canonical polyadic (CP) decomposition extends the previous idea: 

  

where  denotes outer product, , , , and . 

• Tucker decomposition makes a tensor into a set of smaller matrices and one small core 
tensor. It is named after Ledyard R. Tucker; but it goes back to Hitchcock (1927).

argmin
a,b,c

A −
r

∑
i=1

ai ∘ bi ∘ ci

∘ A ∈ ℝm×n×k a ∈ ℝm b ∈ ℝn c ∈ ℝk

Hitchcock, 1927
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Cross-attention mechanisms

• “Show, Attend and Tell (Xu et al., 2015)” proposed soft and hard attentions: 

• Hard attention uses a multinoulli distribution parameterized by weights. 

• While soft attention is deterministic and a convex combination of values. 

• Co-attention or dual-attention (Lu et al., 2016; Nam et al., 2017; Kim et al., 2018) 

• Alternating query and key to get a joint representation from different views 

• BAN (Kim et al., 2018) is proposed to combine two different views simultaneously. 

• Transformer (Vaswani et al., 2017; Yu et al., 2019) 

• Guided attention for multimodal learning 

• Known for parameter-efficient, multi-layer stackable, and better performance.

30



Preliminaries on attention networks

• The Trinity of attention: Query, Key, and Value. Roughly speaking, 

• Query stores task information  

• Key stores information to search 

• Value stores information to use associated with the Key 

• Define a multinoulli distribution to combine values 

• Let ,  and  where  and  are feature sizes. (No batch) 

•  and  are the numbers of features (or tokens). 

•   [Quiz] what  is for?

V ∈ ℝϕ×N Q ∈ ℝρ×dk K ∈ ℝϕ×dk N dk

ϕ ρ

P(V |Q, K) := softmax(
QK⊺

dk
) ∈ ℝρ×ϕ dk

31



Multi-head attention

• Multi-head attention is widely used for its parsimonious. 

• Query and key are embedded by a low-rank matrix where the (at-most) rank is divided by 
the number of heads.  

  

  

• Where  denotes concatenation and , hidden size  is divided by the number 
of attention heads  to keep the total number of parameters. 

• Roughly speaking, it’s a mixture of multinoulli distributions.

MHAtti(Q, K, V) = W⊺
Vi

V ⋅ softmax(
K⊺WKi

W⊺
Qi

Q

dk
)

MHAtt(Q, K, V) = W⊺
P ⋅ ∥i MHAtti(Q, K, V)

∥ dk = dH /g dH

g

32



Hard, soft-attention and variations

• Hard attention is stochastic and a sampling-based approach 

• Monte Carlo sampling (Xu et al., 2015) 

• Thesholding (Malinowski et al., 2018) 

• Gumbel-softmax (Jang et al., 2017) 

• Sparse attention asserts to be a sparse distribution. 

• Sparse transformers (Child et al., 2019) 

• Adaptively sparse transformers (Correia et al., 2019) 

• Combining hard and soft attentions (Gang et al., 2022)

33



Linear attention

• QK computation in the self-attention has  complexity in sequence length , which 
becomes prohibitive for long inputs. 

• Replace the exponential softmax kernel with a feature map  such that
, reducing the cost to . 

• Performer (Choromanski et al., 2020): Introduced random feature maps to approximate 
the softmax kernel with variance bounds, setting the foundation for linear transformers. 

• Recent developments (e.g., SANA, 2024): Explore deterministic kernelizations without 
random features, integrating Mix-FFN with a new linear DiT, which integrates 3×3 
depth-wise convolution into MLP to aggregate the local information of tokens.

𝒪(n2) n

σ( ⋅ )
Att(Q, K, V) ∝ σ(Q)(σ(K)⊤V) 𝒪(n)

SANA (Xie and Chen et al., 2024)
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Time complexity of linear attention

• Let a positive feature map , and omitting embeddings for its simplicity, so that:  

 

• The complexity of the numerator is , while the denominator is 
 using the reordering trick for the row-sum. For the self-attention, we 

denote , and this makes . 

• However, the softmax attention demands , which makes . 

• 💁 The implementation of causal attention may need to use torch.cumsum for 
efficient computation of row-sum.

σ

softmax(QK⊺) ⋅ V ≈
σ(Q)(σ(K)⊺V)

σ(Q)(σ(K)⊺1) + ϵ
.

𝒪(dkϕN+ρdkN)
𝒪(dkϕ + ρdk)

n := ϕ = ρ 𝒪(n)

𝒪(ρdkϕ) 𝒪(n2)

Assumed the sequence length is prohibitively large .ϕ, ρ ≫ dk, N
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Linear vs. softmax

• Convexity guarantee: a valid convex combination requires . Linear attention 
may exploit ReLU, Softplus, or ELU+1 for . 

• In linear attention, stabilize the denominator by always adding a small amount . 

• Linear attention is scale-invariant, while softmax attention is translation-invariant*. This 
is why RMSNorm or LayerNorm is used to keep scales tame in the linear attention. 

• In softmax, exponential contrast makes them more peaked. 

• Softmax never yields exact zeros. When  in linear attention, it makes it lie on the 
simplex boundary (of convex combination). → winner-take-all

wi ≥ 0
σ

ϵ

xi = 0

*The difference originates from the exponential operation in softmax.
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Bilinear attention networks

• Unlike co-attention, BAN learns a joint representation with two views, simultaneously. 

• A joint probability distribution is defined as:  

  

• A joint representation from two groups of value tokens: 

   

• Nested structure of low-rank bilinear pooling 

• Each attention weight logit is low-rank bilinear pooled as . 

• Each joint feature is bilinear pooled as .

𝒜 = softmax(((1 ⋅ p⊺) ∘ X⊺U)V⊺Y) ∈ ℝρ×ϕ

f = tr((X⊺U)⊺𝒜(Y⊺V)) ∈ ℝN

Aij = p⊺((U⊺Xi) ∘ (V⊺Yj))
fk =

ρ

∑
i=1

ϕ

∑
j=1

𝒜ij(X⊺
i Uk)(V⊺

k Yj)

37



Co-attention vs. bilinear attention
38

Key & Value B

Key & Value A Attention
Query A

Attention

Key & Value A

Query B

Attention
Output

Key/Query
Key/Query Attention Attention

Value X
Value Y Diagonal Output

Co-attention (Lu et al., 2016)

Bilinear attention (Kim et al., 2018)



VQA visualization
Q. What color are the pants of the guy skateboarding?

1 The box order is sorted for visualization.
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Transformers with guided-attention

• A curation of self-attention, guided-attention, and MLP with deep learning perks 

• Deep modular co-attention networks (Yu et al., 2019), and a reference (Liu et al., 2022)

Yu et al., 2019
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Layer Normalization

• Ba et al. (2016) proposed a layer that: 

 

•  and  are learnable affine transform parameters.  

• The normalization step removes the statistical bias in a batch while recovering the 
global statistics using  and . 

• The normalization is applied to the last few dimensions (a design choice).

y =
x − E[x]
Var[x] + ϵ

⋅ γ + β

γ β

γ β
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Contrastive learning

• InfoNCE (Oord et al., 2019) as a contrastive loss is defined as: 

   where    is a positive pair.  

• Note that regardless of the number of negative samples  (see Eqn. 5),  

    (using Bayes’ theorem) 

where  denotes approximation. 

• A negative InfoNCE can approximate1 a lower bound of mutual information: 

 

ℒN = − 𝔼[log
f(xi, h)

∑j f(xj, h) ] (xi, h)

N − 1

f ⋆(xi, h) ∝
p(xi |h)

p(xi)
⋆

I(xi; h) ≥ log(N) − ℒ⋆
N

1The error is minimizing with a larger  in their proof (see Appendix A.1.)N
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InfoNCE as contrastive loss

• We choose  as an exponential of cosine similarity. 

• Theoretically, a larger  is better. Be careful to multi-gpu implement: 1) all_gather 
does not back-propagate1, 2) DDP calculates the mean of gradients across all 
processes, not summation. 

f(x, h) = exp(x⊺h)

N

1https://amsword.medium.com/gradient-backpropagation-with-torch-distributed-all-gather-9f3941a381f8
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Language Vision
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Diagonal & mean



GatherLayer in PyTorch
import torch 
import torch.distributed as dist 
 
class GatherLayer(torch.autograd.Function): 

    """GatherLayer gathers input tensors from all processes. 
    """ 

    @staticmethod 
    def forward(ctx, input): 
        ctx.save_for_backward(input) 
        if dist.is_initialized(): 
            output = [ 
                torch.zeros_like(input) for _ in range(dist.get_world_size()) 
            ] 
            dist.all_gather(output, input) 
        else: 
            output = [input] 
        return tuple(output) 

    @staticmethod 
    def backward(ctx, *grads): 
        input, = ctx.saved_tensors 

        if dist.is_initialized(): 
            dist_ops = [ 
                dist.reduce(grads[i], i, async_op=True) 
                for i in range(dist.get_world_size())] 

            for op in dist_ops: 
                op.wait() 

        grad_out = torch.zeros_like(input) 
        grad_out[:] = grads[dist.get_rank() if dist.is_initialized() else 0] 
        return grad_out 

The asynchronous operations will maintain the order.

45

    @staticmethod 
    def get_rank_slice(batch_size: int) -> slice: 
        """Get a slice to get a portion of gathered tensor corresponding to the 
        current rank. 

        Args: 
            batch_size (int): Local batch size 

        Returns: 
            slice: slice for the current rank 
        """ 
        rank = dist.get_rank() if dist.is_initialized() else 0 
        return slice(rank * batch_size, (rank + 1) * batch_size)

forwarding after gathering

backward with the grad of the current batch



E-CLIP

• Large-scale vision-language representation learning in e-commerce (Shin et al., 2022) 

• NAVER Shopping and AI Lab collaborate to build a multimodal backbone for diverse 
downstream tasks, i.e., category classification, attribute extraction, product matching, 
product clustering, and adult product recognition.

46

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Wonyoung Shin et al.

(a) Query-based Search. (b) Filter-based Search. (c) Price Comparison.

Figure 1: NAVER Shopping is a shopping portal service that provides product search, price comparison, and shopping content
so that users can easily access products and sellers registered on NAVER Shopping: (a) shows a search results page with the
keyword ‘samsung tv’. There are various search �lters such as categories (i.e., type) and attributes (e.g., screen size, resolution,
and energy e�ciency), improving the user’s ability to browse relevant products and producing accurate product rankings; (b)
shows a search results page after applying category and attribute �lters; (c) shows an example of a group of the same products
we call ‘catalog’, which helps provide price comparison over multiple sellers on the same product.

with slightly di�erent attributes, such as their size or volume,
constitute a great proportion of data. However, these duplicate
products are problematic for contrastive learning, because they
are the same but treated as di�erent products during training; the
contrastive loss pushes away embeddings of the same product.

3. Irregularity and Sparsity. Product text in e-commerce con-
sists of condensed details about products and lacks grammatical
structure. They are usually short and have a sparse context [75].
For instance, 50% of product titles in our dataset contain fewer
than eleven words. Therefore, capturing the correct semantics
from product titles can be di�cult.

4. Limited Memory. The limited memory of deep learning accel-
erators such as GPUs and TPUs can act as a bottleneck when
training a large model along with a large batch size [11, 45]. Fur-
thermore, due to the large data size, data cannot be fully loaded
and can exceed the memory capacity during training.

5. Model Convergence. Trainingwith a large batch usually results
in lower model accuracy and slow convergence speed, even for
a large number of epochs [22, 54]. Therefore, there remains a
need for faster convergence.
In this work, we provide insights from our experience and a

series of successfully implemented techniques to overcome the
above challenges. We �rst introduce the overall system architecture
of NAVER Shopping, and propose a contrastive learning frame-
work named e-CLIP that learns visual concepts in the product
image using the textual product information. We improve upon this
framework by proposing new algorithmic and technical approaches,
namely ‘catalog-based soft labeling’, ‘category-based negative sam-
pling’, ‘multi-stream accumulation’, and ‘batch size scheduler’ (see

Section 3.3 for details). They successfully save memory and expedite
model convergence, enabling e�cient trainingwith satisfactory per-
formance on multiple e-commerce downstream tasks. In addition
to the framework, we present e�ective data preprocessing meth-
ods, including cleaning noisy data by removing invalid, duplicate,
and inappropriate products. We conduct extensive experiments on
�ve downstream tasks in NAVER Shopping, i.e., product matching,
product clustering, attribute extraction, category classi�cation, and
adult product recognition. Experimental results demonstrate the
e�ectiveness of the proposed system and con�rm our contributions
to the improvement in accuracy and e�ciency.

In summary, our main contributions are as follows:

• To the best of our knowledge, this is the �rst large-scale indus-
try study investigating a uni�ed multimodal transformer model
which is symmetric for both modalities.

• We present an e�cient yet e�ective contrastive learning frame-
work e-CLIP, which exploits the large-scale NAVER Shopping
dataset regardless of the presence of duplicate products.

• We identify �ve main challenges of adopting a large-scale vision
and language pre-training in e-commerce and suggest algorith-
mic and technical approaches to tackle the issues.

• We conduct extensive o�ine and online experiments to validate
the e�ectiveness of e-CLIP in single and multiple modalities. The
results show that the proposed framework boost the performance
of both visual and language tasks.

• We apply e-CLIP to multilingual downstream classi�cation and
clustering tasks in a real industrial scenario and obtain positive
feedback, which may bene�t further research.

3485
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above challenges. We �rst introduce the overall system architecture
of NAVER Shopping, and propose a contrastive learning frame-
work named e-CLIP that learns visual concepts in the product
image using the textual product information. We improve upon this
framework by proposing new algorithmic and technical approaches,
namely ‘catalog-based soft labeling’, ‘category-based negative sam-
pling’, ‘multi-stream accumulation’, and ‘batch size scheduler’ (see

Section 3.3 for details). They successfully save memory and expedite
model convergence, enabling e�cient trainingwith satisfactory per-
formance on multiple e-commerce downstream tasks. In addition
to the framework, we present e�ective data preprocessing meth-
ods, including cleaning noisy data by removing invalid, duplicate,
and inappropriate products. We conduct extensive experiments on
�ve downstream tasks in NAVER Shopping, i.e., product matching,
product clustering, attribute extraction, category classi�cation, and
adult product recognition. Experimental results demonstrate the
e�ectiveness of the proposed system and con�rm our contributions
to the improvement in accuracy and e�ciency.

In summary, our main contributions are as follows:

• To the best of our knowledge, this is the �rst large-scale indus-
try study investigating a uni�ed multimodal transformer model
which is symmetric for both modalities.

• We present an e�cient yet e�ective contrastive learning frame-
work e-CLIP, which exploits the large-scale NAVER Shopping
dataset regardless of the presence of duplicate products.

• We identify �ve main challenges of adopting a large-scale vision
and language pre-training in e-commerce and suggest algorith-
mic and technical approaches to tackle the issues.

• We conduct extensive o�ine and online experiments to validate
the e�ectiveness of e-CLIP in single and multiple modalities. The
results show that the proposed framework boost the performance
of both visual and language tasks.

• We apply e-CLIP to multilingual downstream classi�cation and
clustering tasks in a real industrial scenario and obtain positive
feedback, which may bene�t further research.
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Data preprocessing

• We filter the 1.5B-scale database to make 330M text-image pairs, removing invalid, 
duplicated, and inappropriate products to our customer policy.
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Figure 2: System architecture of NAVER Shopping.

product content and descriptions, including product titles and im-
ages from sellers. The data is then processed and stored systemati-
cally in a distributed database.

From the abundant source of data provided by sellers, data is
extracted and preprocessed to train our uni�ed multimodal model,
as described in 3.2.2.Multimodal transformermodels are pre-trained
on this data using a contrastive loss detailed in Section 3.3 and saved
to storage. If the quality bar is met, the updated model becomes
a reliable source model to build upon for downstream modeling
tasks, where �ne-tuning can be applied to enhance performance.

Lastly, these downstream applications are used to augment prod-
uct descriptions with predicted attributes and categories, dramati-
cally impacting the retrieval and ranking of search results. We dive
into the details of our framework below, describing each compo-
nent that participated in signi�cantly improving the performance
of applications.

3.2 Data Preparation
3.2.1 Data Collection. Over a billion products from hundreds of
thousands of sellers are deployed, and millions of new products
are continuously uploaded, deleted, and modi�ed daily on NAVER
Shopping platform. More and more products are registered every
day from a growing number of a�liated online shopping malls as
well as individual sellers.

According to NAVER Shopping’s registration guide, sellers reg-
ister product content and descriptions, including the product title,
price, brand name, and a set of images, as shown in Table 1. When
the registration request is received, product images are stored after
processing and resizing to meet the thumbnail image standards of
NAVER Shopping.

The next stage consists of examining whether products are sell-
able or have been sold out. If products are con�rmed to be valid,
products are assigned predicted categories through classi�cation
and checked if there are similar products in the database for product
comparison. Because product information is surprisingly sparse
and limited, many parts of NAVER Shopping’s product manage-
ment pipelines are operated with AI-based recommendation and
matching systems that use both product images and its textual
information (i.e., multimodal input). More details about the predic-
tion tasks are described in Section 3.4. Products that have passed
veri�cation and classi�cation processes are considered serviceable.
Detailed information about the product, such as brand name, cate-
gory, and product image path, are saved into separate tables and
uploaded to the database.

A snapshot of the NAVER Shopping database is generated every
day and uploaded to the Hadoop distributed storage engine [15]. We
collect and re�ne product data from the snapshot data for training.
Product data is later used as pairs of a product image and textual
information, such as the product title and brand name. To deal with
billions of product data, we use Spark [68] and mainly work on the
Hadoop ecosystem [39].

3.2.2 Data Preprocessing. We use the large volume of collected
product data by extracting the product text and image as pairs. We
then preprocess the dataset due to common problems that plague
e-commerce datasets, including corrupted data, duplicate products,
and skewed data distributions. We execute preprocessing regarding
the following three types of data, which is necessary to improve
data quality for better representation learning.
1. Invalid Products: Valid pairs of product image and text are es-

sential for cross-modal e-commerce representation learning, but
a number of mismatched pairs are included during collection
due to system abuse. To improve data validity, we �rst removed
image-text pairs with no images, too small images, and corrupted
images, as exampled in Figure 3(a), using a rule-based system.
We also discarded the pairs with invalid text by comparing the
token set of product titles; After replacing special characters
with white-space in the product titles, we eliminated products
with titles consisting of less than two tokens.

2. Duplicate Products: We aimed to eliminate duplicate products,
exampled in Figure 3(b), based on product titles and images.
We �rst dropped products with identical titles. To eliminate
products with duplicate images, we reshaped a product image
into (5,5) patches and created one-digit hash keys from the mean
color value of each patch. We also took the image size into
consideration, resulting in a 29-digit hashed value. Images with
the same hashed values were removed. Moreover, as suggested
by [59], we retrieved compressed embeddings extracted from the
last layer of ResNet-34 pre-trained on ImageNet for all images
and eliminated duplicate images with the same embeddings.

3. Inappropriate Products: Product data collected from various sell-
ers contain inappropriate products that are non-compliant with
organizational policies, including adult products, promotional
products, social issue products, and immoral products (see Fig-
ure 3(c)). Not only do these products show distributions that
deviate from the general distribution of normal products, but
they are also manipulated not to be �ltered. For example, sellers
blur or mask the critical parts of the image but use product titles
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Multimodal metrics



Multimodal generative models

• Multimodal generative models generate an output in a modality conditioned on the 
other modal input. (Although there are its variants.) 

• Text-to-image generation (text → image) and image captioning (image → text) 

• Multimodal representation learning maps two different modalities where the deep 
neural networks act as a mapping function.
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Metrics for text-to-image generation

• Text-to-image generation 

• Inception Score (Salimans et al., 2016) 

• Fréchet Inception Distance (Heusel et al., 2017) 

• R-Precision (Xu et al., 2018), CLIP-R-Precision (Park et al., 2021) 

• Semantic Object Accuracy (YOLOv3) (Hinz et al., 2020) 

• Caption generation (fake → caption → captioning metrics) (Hong et al., 2018) 

• CLIP Similarity
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Metrics for image captioning

• Reference-only image caption evaluation 

• BLEU-4 (Papineni et al., 2002): a precision between a candidate and references 

• ROUGE-L (Lin, 2004): a sort of recall 

• METEOR (Banerjee and Lavie, 2005): a word-level alignment 

• CIDEr (Vedantam et al., 2015): n-gram tf-idf weighting and stemming 

• SPICE (Anderson et al., 2016): a semantic parser and scene graph 

• BERTScore (Zhang et al., 2020): a tuned BERT
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Metrics for image captioning (Cont’d)

• Reference+image caption evaluation 

• TIGEr (Jiang et al., 2019): a pretrained SCAN model (Lee et al., 2018) 

• ViLBERTScore-F (Lee et al., 2020): a pertained ViLBERT (Lu et al., 2019) 

• RefCLIP-S (Radford et al., 2021) 

• Reference-free evaluation 

• Usually for other generation tasks, summarization and dialog 

• VIFIDEL (Madhyastha et al., 2019): an object detector-based for a fixed object vocabulary 

• CLIP-S (Radford et al., 2021)
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Rank correlation — metrics for metrics
• Pearson r correlation  

• Assume normal distribution, linearity, homoscedasticity1. 

• Spearman rank correlation 

• Non-parametric, no assumption about the data distribution, appropriate for ordinal, monotonically 
related to the other variable. One of factors is the rank difference of corresponding variables 

• Kendall rank correlation ✅ 

• Non-parametric, considering all pairings 

• Spearman and Kendall are not dependent upon the granularity of the integers. 

• "...confidence intervals for Spearman’s rS are less reliable and less interpretable than confidence 
intervals for Kendall’s τ-parameters…” (Kendall & Gibbons, 1990)

1Roughly speaking, the same variance or random disturbance is the same across all variables. 
https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/correlation-pearson-kendall-spearman/ 
Lovie, A. D. (1995). Who discovered Spearman's rank correlation? British Journal of Mathematical and Statistical Psychology, 48(2), 255–269.
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Mutual Information Divergence

Kim et al., NeurIPS 2022



Representation measurement 

• How to measure the “aligned” multimodal representations? 

• In information theory, the mutual information of two random variables measures the 
mutual dependence between the two variables.  

• It quantifies the information gain about one random variable by observing the other. 

• Viewing the representations as random variables, we measure the quantity of how 
much they share the multimodal information.
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Information entropy

• The entropy of a random variable quantifies the average level of uncertainty or 
information associated with the variable's potential states or possible outcomes. 

• Let a random variable  and the probability . The entropy is: 

 

• Claude Shannon introduced the concept of  
information entropy in his 1948 paper  
“A Mathematical Theory of Communication.”

X ∈ χ PX : χ → [0, 1]

H(X) = − ∑
x∈χ

PX(x)log PX(x) = Ex∈χ[ − log PX(x)]
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Entropy definition
• Information entropy quantifies information defined as: 

 

• Mutual information measures the mutual dependence between two variables: 

 

• For the continuous random variables, 

H(X) = − ∑
x

PX(x)log PX(x)

I(X; Y) = ∑
y

∑
x

PXY(x, y)log( PXY(x, y)
PX(x)PY(y) )

I(X; Y) = ∫y ∫x
PXY(x, y)log( PXY(x, y)

PX(x)PY(y) )dxdy
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Gaussian mutual information

• The general multivariate form of Gaussian distribution for a random D dimensional 
vector x can be written as: 

 

• The Gaussian mutual information is reduced to: 

 

where Z denotes the concatenation of X and Y.

p(x) =
1

(2π)D det(Σ)
exp[ −

1
2

(x − x̄)⊺Σ−1(x − x̄)]

I(X; Y) =
1
2

log( det(ΣX) det(ΣY)
det(ΣZ) )

Elements of Information Theory, Cover & Thomas, 2006.
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Point-wise mutual information (PMI)

• For sample-wise evaluation, we use PMI defined as: 

 

where  is the squared Mahalanobis distance (SMD) parameterized by  and . 

 

• The MI is from the normalization terms of the Gaussian distributions, and the SMDs 
are from the exponential terms in the previous slide’s equation. 

• Notice that the expectation of the SMD with respect to samples is  for  and , and 
 for .

PMI(x; y) = I(X; Y) +
1
2 (D2

M(x) + D2
M(y) − D2

M(z))
D2

M(x) μX ΣX

D2
M(x) = (x − μX)⊺Σ−1

X (x − μX)

D x y
2D z = [x; y]
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Mahalanobis distance

• The Mahalanobis distance is a measure of the distance between a point and a 
probability distribution (Mahalanobis, 1936). 

• It is a multivariate generalization of the square of the standard score*: . z = (x − μ)/σ

D2
M(x) = (x − μX)⊺Σ−1

X (x − μX)

*Z-score, otherwise.

60

μX
x



Expectation of SMD
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A Proofs479

A.1 Proof of the mutual information with Gaussian distributions480

The mutual information of two Gaussian distributions is defined as:481

I(X;Y) =
1

2
log

⇣det(⌃x) det(⌃y)

det(⌃)

⌘
. (9)

Proof. Let the mutual information be:482

I(X;Y) = Ep(x,y)

h
log
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i
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Using the definition of multivariate Gaussian distribution as follows,483
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we rearrange the equation to cancel out the constant terms. Then, the continuous mutual information484

is reduced to:485
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where D2
M denotes the squared Mahalanobis distance defined by D

2
M (x) = (x� µx)|⌃�1

x (x� µx),486

where µx and ⌃x are the mean and covariance of x, and z denotes [x;y].487

By the way, the expectation of the squared Mahalanobis distance is the dimension of samples, D.488
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where X 2 RD⇥N is the samples, ID 2 RD⇥D is the identity matrix. We use the cyclic property of489

trace where tr(ABC) = tr(BCA). Therefore, the second term reduces to zero as follows:490
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We conclude the proof.491

By the way, the point-wise mutual information (PMI) with Gaussian distributions can be derived from492

Equation 12:493
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2
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�
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A.2 The bias-variance decomposition of the expectation of the squared Mahalanobis distance494

The expectation of PMI with respect to evaluating samples needs to calculate the expectation of three495

terms of the squared Mahalanobis distances (SMD) with respect to the evaluating sample x̂. With a496

notation of X̂ 2 RD⇥N for evaluation samples, we can decompose the expectation of SMD with two497

terms of bias and variance as follows:498
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where 1 2 RN is a vector of ones. Remind that the expectation of SMD is D when the evaluating499

samples x̂ are following the distribution of x in Equation 13. However, the above equation shows500

that if the mean or covariance of x̂ deviates from x, the result may be smaller or larger than D.501
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Do CLIP features follow a Gaussian?

• CLIP’s embeddings are L2-normalized to lie on the unit hypersphere. 

• To separate positives from negatives in the InfoNCE, the model benefits if negatives 
are spread out evenly (Wang & Isola, 2020). 

• In high dimensions, a normalized Gaussian vector is uniformly distributed on the 
sphere. So, InfoNCE indirectly drives embeddings toward behaving like samples from 
an isotropic Gaussian, normalized. 

• Gaussians have the largest entropy among all probability distributions with mean and 
variance constraints. The most unbiased choice.
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Mutual Information Divergence (MID)

• Kim et al. (2022) proposed the expectation of PMI w.r.t. the evaluating sample , 
measuring the divergence from the ground-truth or reference samples . 

• It is the negative cross-mutual information (Bugliarello et al., 2020) for Gaussian. 

 

where  denotes a pair of evaluating samples, respectively, and . Here, 
 is parameterized by  and , the reference statistics. 

• They denoted this as Mutual Information Divergence (MID), comparable to the FID.

( ̂x, ̂y)
(X, Y)

𝔼( ̂x, ̂y)∼𝒟PMI( ̂x; ̂y) = I(X; Y) +
1
2

𝔼( ̂x, ̂y)∼𝒟[D2
M( ̂x) + D2

M( ̂y) − D2
M( ̂z)]

( ̂x, ̂y) ̂z = [ ̂x; ̂y]
D2

M( ̂x) μX ΣX

*By the way, the cross entropy is defined as .H(p, q) = − 𝔼p[log q] = H(p) + DKL(p∥q)
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Bias and variance decomposition

• The expectation of SMD w.r.t.  can be decomposed into bias and variance.( ̂x, ̂y)
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M denotes the squared Mahalanobis distance defined by D

2
M (x) = (x� µx)|⌃�1

x (x� µx),486

where µx and ⌃x are the mean and covariance of x, and z denotes [x;y].487

By the way, the expectation of the squared Mahalanobis distance is the dimension of samples, D.488
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where X 2 RD⇥N is the samples, ID 2 RD⇥D is the identity matrix. We use the cyclic property of489

trace where tr(ABC) = tr(BCA). Therefore, the second term reduces to zero as follows:490
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We conclude the proof.491

By the way, the point-wise mutual information (PMI) with Gaussian distributions can be derived from492

Equation 12:493
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A.2 The bias-variance decomposition of the expectation of the squared Mahalanobis distance494

The expectation of PMI with respect to evaluating samples needs to calculate the expectation of three495
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where 1 2 RN is a vector of ones. Remind that the expectation of SMD is D when the evaluating499

samples x̂ are following the distribution of x in Equation 13. However, the above equation shows500

that if the mean or covariance of x̂ deviates from x, the result may be smaller or larger than D.501
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A.3 Relation to Kullback–Leibler divergence504

The proposed method MID is related to Kullback-Leibler divergence (or relative entropy). Let505

N0(µ0,⌃0) and N1(µ1,⌃1) are two multivariate normal distributions having the same dimension of506

D, then the Kullback-Leibler divergence between the distributions is as follows [47]:507
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Using the above equation and Equation 22, we rearrange Equation 12 as follows:508
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=I(X̂; Ŷ) +DKL(p(x̂) k p(x))�DKL(p(ẑ) k p(z)) (25)

where DKL(p(ŷ) k p(y)) = 0 since ŷ and y are the same condition evaluating generations.509

B Generated Likert-scale judgment correlation using VQ-Diffusion510

Table 8 and Figure 6 show the results from the (foiled) fake images using VQ-Diffusion [41]. While511

the proposed MID outperforms the competing methods, the portion of fake images that get higher512

scores than real images is decreased in InfoNCE and CLIP-S. This observation may attribute to the513

under-performance of VQ-Diffusion than LAFTIE or the side effect of the contrastive loss used514

in LAFITE. Remind that our method shows the consistency toward different models among the515

comparative metrics.516

Table 8: Generated Likert-scale judgment correlation using VQ-Diffusion. † uses the i.i.d. samples
having at least one detected object, which was 88.1% of samples, to calculate the SOA accuracy per
image.

Method Backbone Kendall ⌧c Kendall ⌧b

SOA† [8] YOLO-V3 37.0 38.4

CLIP-S [19] CLIP (ViT-B/32) 70.3 60.9
InfoNCE [36] CLIP (ViT-B/32) 74.2 64.3
CLIP-R-Precision [11] CLIP (ViT-B/32) 66.5 54.5
OFA-Captioning+CLIP-S [19, 37] OFA-Large + CLIP (ViT-B/32) 73.8 63.9

CLIP-S [19] CLIP (ViT-L/14) 70.9 61.4
InfoNCE [36] CLIP (ViT-L/14) 78.0 67.6
CLIP-R-Precision [11] CLIP (ViT-L/14) 68.5 56.5
OFA-Captioning+CLIP-S [19, 37] OFA-Large + CLIP (ViT-L/14) 74.2 64.3

MID (ours) CLIP (ViT-B/32) 79.8 69.1
MID (ours) CLIP (ViT-L/14) 82.0 71.1

C The details on visual reasoning accuracy517

We describe the detail of visual reasoning accuracy in Table 3. For the object task, we use randomly518

sampled 30K captions from the FOIL dataset [38]. For the count task, we use a set of tokens "0",519

"1", "2", "3", "4", "one", "two", "three", and "four". For the color task, we use the sixteen basic520

color keywords 4. For the spatial relationship task, we use "above", "below", "left", "right", "front",521

and "back". The number of samples are 30K, 1.3K, 4.6K, 1.5K for the object, count, color, spatial522

relationship tasks, respectively.523
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A.3 Relation to Kullback–Leibler divergence504

The proposed method MID is related to Kullback-Leibler divergence (or relative entropy). Let505

N0(µ0,⌃0) and N1(µ1,⌃1) are two multivariate normal distributions having the same dimension of506

D, then the Kullback-Leibler divergence between the distributions is as follows [47]:507
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Using the above equation and Equation 22, we rearrange Equation 12 as follows:508
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=I(X̂; Ŷ) +DKL(p(x̂) k p(x))�DKL(p(ẑ) k p(z)) (25)

where DKL(p(ŷ) k p(y)) = 0 since ŷ and y are the same condition evaluating generations.509

B Generated Likert-scale judgment correlation using VQ-Diffusion510

Table 8 and Figure 6 show the results from the (foiled) fake images using VQ-Diffusion [41]. While511

the proposed MID outperforms the competing methods, the portion of fake images that get higher512

scores than real images is decreased in InfoNCE and CLIP-S. This observation may attribute to the513

under-performance of VQ-Diffusion than LAFTIE or the side effect of the contrastive loss used514

in LAFITE. Remind that our method shows the consistency toward different models among the515

comparative metrics.516

Table 8: Generated Likert-scale judgment correlation using VQ-Diffusion. † uses the i.i.d. samples
having at least one detected object, which was 88.1% of samples, to calculate the SOA accuracy per
image.

Method Backbone Kendall ⌧c Kendall ⌧b

SOA† [8] YOLO-V3 37.0 38.4

CLIP-S [19] CLIP (ViT-B/32) 70.3 60.9
InfoNCE [36] CLIP (ViT-B/32) 74.2 64.3
CLIP-R-Precision [11] CLIP (ViT-B/32) 66.5 54.5
OFA-Captioning+CLIP-S [19, 37] OFA-Large + CLIP (ViT-B/32) 73.8 63.9

CLIP-S [19] CLIP (ViT-L/14) 70.9 61.4
InfoNCE [36] CLIP (ViT-L/14) 78.0 67.6
CLIP-R-Precision [11] CLIP (ViT-L/14) 68.5 56.5
OFA-Captioning+CLIP-S [19, 37] OFA-Large + CLIP (ViT-L/14) 74.2 64.3

MID (ours) CLIP (ViT-B/32) 79.8 69.1
MID (ours) CLIP (ViT-L/14) 82.0 71.1

C The details on visual reasoning accuracy517

We describe the detail of visual reasoning accuracy in Table 3. For the object task, we use randomly518

sampled 30K captions from the FOIL dataset [38]. For the count task, we use a set of tokens "0",519

"1", "2", "3", "4", "one", "two", "three", and "four". For the color task, we use the sixteen basic520

color keywords 4. For the spatial relationship task, we use "above", "below", "left", "right", "front",521

and "back". The number of samples are 30K, 1.3K, 4.6K, 1.5K for the object, count, color, spatial522

relationship tasks, respectively.523
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A.3 Relation to Kullback–Leibler divergence504

The proposed method MID is related to Kullback-Leibler divergence (or relative entropy). Let505

N0(µ0,⌃0) and N1(µ1,⌃1) are two multivariate normal distributions having the same dimension of506

D, then the Kullback-Leibler divergence between the distributions is as follows [47]:507
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Using the above equation and Equation 22, we rearrange Equation 12 as follows:508
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=I(X̂; Ŷ) +DKL(p(x̂) k p(x))�DKL(p(ẑ) k p(z)) (25)

where DKL(p(ŷ) k p(y)) = 0 since ŷ and y are the same condition evaluating generations.509

B Generated Likert-scale judgment correlation using VQ-Diffusion510

Table 8 and Figure 6 show the results from the (foiled) fake images using VQ-Diffusion [41]. While511

the proposed MID outperforms the competing methods, the portion of fake images that get higher512

scores than real images is decreased in InfoNCE and CLIP-S. This observation may attribute to the513

under-performance of VQ-Diffusion than LAFTIE or the side effect of the contrastive loss used514

in LAFITE. Remind that our method shows the consistency toward different models among the515

comparative metrics.516

Table 8: Generated Likert-scale judgment correlation using VQ-Diffusion. † uses the i.i.d. samples
having at least one detected object, which was 88.1% of samples, to calculate the SOA accuracy per
image.

Method Backbone Kendall ⌧c Kendall ⌧b

SOA† [8] YOLO-V3 37.0 38.4

CLIP-S [19] CLIP (ViT-B/32) 70.3 60.9
InfoNCE [36] CLIP (ViT-B/32) 74.2 64.3
CLIP-R-Precision [11] CLIP (ViT-B/32) 66.5 54.5
OFA-Captioning+CLIP-S [19, 37] OFA-Large + CLIP (ViT-B/32) 73.8 63.9

CLIP-S [19] CLIP (ViT-L/14) 70.9 61.4
InfoNCE [36] CLIP (ViT-L/14) 78.0 67.6
CLIP-R-Precision [11] CLIP (ViT-L/14) 68.5 56.5
OFA-Captioning+CLIP-S [19, 37] OFA-Large + CLIP (ViT-L/14) 74.2 64.3

MID (ours) CLIP (ViT-B/32) 79.8 69.1
MID (ours) CLIP (ViT-L/14) 82.0 71.1

C The details on visual reasoning accuracy517

We describe the detail of visual reasoning accuracy in Table 3. For the object task, we use randomly518

sampled 30K captions from the FOIL dataset [38]. For the count task, we use a set of tokens "0",519

"1", "2", "3", "4", "one", "two", "three", and "four". For the color task, we use the sixteen basic520

color keywords 4. For the spatial relationship task, we use "above", "below", "left", "right", "front",521

and "back". The number of samples are 30K, 1.3K, 4.6K, 1.5K for the object, count, color, spatial522

relationship tasks, respectively.523
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A.3 Relation to Kullback–Leibler divergence504

The proposed method MID is related to Kullback-Leibler divergence (or relative entropy). Let505

N0(µ0,⌃0) and N1(µ1,⌃1) are two multivariate normal distributions having the same dimension of506

D, then the Kullback-Leibler divergence between the distributions is as follows [47]:507
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Using the above equation and Equation 22, we rearrange Equation 12 as follows:508
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⌘
� log

⇣det⌃z

det⌃ẑ
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where DKL(p(ŷ) k p(y)) = 0 since ŷ and y are the same condition evaluating generations.509

B Generated Likert-scale judgment correlation using VQ-Diffusion510

Table 8 and Figure 6 show the results from the (foiled) fake images using VQ-Diffusion [41]. While511

the proposed MID outperforms the competing methods, the portion of fake images that get higher512

scores than real images is decreased in InfoNCE and CLIP-S. This observation may attribute to the513

under-performance of VQ-Diffusion than LAFTIE or the side effect of the contrastive loss used514

in LAFITE. Remind that our method shows the consistency toward different models among the515

comparative metrics.516

Table 8: Generated Likert-scale judgment correlation using VQ-Diffusion. † uses the i.i.d. samples
having at least one detected object, which was 88.1% of samples, to calculate the SOA accuracy per
image.

Method Backbone Kendall ⌧c Kendall ⌧b

SOA† [8] YOLO-V3 37.0 38.4

CLIP-S [19] CLIP (ViT-B/32) 70.3 60.9
InfoNCE [36] CLIP (ViT-B/32) 74.2 64.3
CLIP-R-Precision [11] CLIP (ViT-B/32) 66.5 54.5
OFA-Captioning+CLIP-S [19, 37] OFA-Large + CLIP (ViT-B/32) 73.8 63.9

CLIP-S [19] CLIP (ViT-L/14) 70.9 61.4
InfoNCE [36] CLIP (ViT-L/14) 78.0 67.6
CLIP-R-Precision [11] CLIP (ViT-L/14) 68.5 56.5
OFA-Captioning+CLIP-S [19, 37] OFA-Large + CLIP (ViT-L/14) 74.2 64.3

MID (ours) CLIP (ViT-B/32) 79.8 69.1
MID (ours) CLIP (ViT-L/14) 82.0 71.1

C The details on visual reasoning accuracy517

We describe the detail of visual reasoning accuracy in Table 3. For the object task, we use randomly518

sampled 30K captions from the FOIL dataset [38]. For the count task, we use a set of tokens "0",519

"1", "2", "3", "4", "one", "two", "three", and "four". For the color task, we use the sixteen basic520

color keywords 4. For the spatial relationship task, we use "above", "below", "left", "right", "front",521

and "back". The number of samples are 30K, 1.3K, 4.6K, 1.5K for the object, count, color, spatial522

relationship tasks, respectively.523
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Human-free judgments

• For a given GT caption, we collect four images with a 1-4 scale judgment. 

• 4: The real image aligned with the given GT caption 

• 3: a generated image from the GT caption 

• 2: a generated image from a FOIL caption 

• 1: a random generated image 

• Assumptions 

• Generated image is not better than real image. 

• Generated image from a FOIL caption is not better than the one from the GT caption. 

• A random image is not better than the generated images from the GT or FOIL captions.
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People riding bicycles down 
the road approaching a dog.

⚠ Foiled!



Score distributions

Judgment correlations for each metric can be found in Table 1 (LAFITE) and 8 (VQ-Diffusion).
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Score distributions (cont’d)

Metrics’ overfitting to fake image can be problematic. (Dinh et al., 2021)
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Human evaluation for text-to-image models

• The human judgment correlation only for the fake images from GT caption, which is 
more difficult than the previous generated benchmark.

All results are statistically significant (p < 0.001). Table 2 for more details. *SOA used YOLO-v3.
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Human evaluations

All metrics use 4-5 ground truth references, except for CLIP-S (which uses none).
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Flickr8K-Expert Human Judgment Correlation

Kendall tau_c

BLEU-1 32.3
BLEU-4 30.8

ROUGE-L 32.3
BERT-S (RoBERTa-F) 39.2

METEOR 41.8
CIDEr 43.9
SPICE 44.9

LEIC (τb) (Cui et al. 2018) 46.6
BERT-S++ (Yi et al. 2020) 46.7
TIGEr (Jiang et al. 2019) 49.3

NUBIA (Kane et al. 2020) 49.5
ViLBERTScore-F (Lee et al. 2020) 50.1

CLIP-S (no refs) 51.2
RefCLIP-S 53.0

MID (ours) 54.9

Flickr8K-CF Human Judgment Correlation

Kendall tau_b

BLEU-4 16.9

CIDEr 24.6

METEOR 22.2

ROUGE-L 19.9

SPICE 24.4

BERT-S (RoBERTa-F) 22.8

LEIC 29.5

CLIP-S (no refs) 34.4

RefCLIP-S 36.4

MID (ours) 37.3



Human evaluations

Report the average of results with five randomly-sampled references, except for CLIP-S (which uses none).
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Pascal-50S

HC HI HM MM Mean

Length-bias 51.7 52.3 63.6 49.6 54.3

BLEU-4 60.4 90.6 84.9 54.7 72.6

SPICE 63.6 96.3 86.7 68.3 78.7

METEOR 63.8 97.7 93.7 65.4 80.1

ROUGE-L 63.7 95.3 92.3 61.2 78.1

CIDEr 65.1 98.1 90.5 64.8 79.6

BERT-S (RoBERTa-F) 65.4 96.2 93.3 61.4 79.1

TIGEr 56.0 99.8 92.8 74.2 80.7

ViLBERTScore-F 49.9 99.6 93.1 75.8 79.6

BERT-S++ 65.4 98.1 96.4 60.3 80.1

CLIP-S (no refs) 56.5 99.3 96.4 70.4 80.7

RefCLIP-S 64.5 99.6 95.4 72.8 83.1

MID (ours) 67.0 99.7 97.4 76.8 85.2

FOIL

1-ref 4-ref

Length-bias 50.2 50.2

BLEU-4 66.5 82.6

METEOR 78.8 85.4

ROUGE-L 71.7 79.3

CIDEr 82.5 90.6

SPICE 75.5 86.1

BERT-S (RoBERTa-F) 88.6 92.1

CLIP-S (no refs) 87.2 87.2

RefCLIP-S 91.0 92.6

MID (ours) 90.5 90.5



FOIL visualization

• The first two columns show the corrected examples, while the third column shows an example that CLIP-S and MID failed to detect.  

• RefCLIP-S directly exploits the reference captions where the counterpart of the foiled word appears. One of the references of the 
third example was that ` à woman is picking bananas from a basket.''  

• The fourth example shows that MID can be negative for unlikely samples since it is based on the definition of differential entropy.
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FO: A tall book tower with 
people walking down a city 
street. (CLIP-S/RefCLIP-S/
PMI=.737/.804/16.9)

GT: A tall clock tower with 
people walking down a city 
street. (.738/.806/20.0)

FO: Some people a chair 
some bananas and plastic 
cups. (.747/.832/8.63)

GT: Some people a table 
some bananas and plastic 
cups. (.756/.843/12.0)

FO: a giraffe grazing on grass 
in an open field. 
(.707/.747/-4.89)

GT: A zebra grazing on grass 
in an open field. 
(.718/.821/38.6)

FO: Large bowls of broccoli 
bunches being examined by a 
female buyer. (.774/.811/11.8)

GT: Large bowls of banana 
bunches being examined by a 
female buyer. (.761/.815/9.61)

A woman is tending to the different containers of food. 

A woman is picking bananas from a basket.

A street vendor setting out buckets of bunches of bananas.

A person putting bananas in baskets near a bench.

FO: A boat that is flying in the 
sky. (.728/.791/12.7) 
GT: A airplane that is flying in 
the sky. (.779/.845/37.2)

1



Robustness toward domains

• Randomly shuffled text-image alignments to see the change of scores. Narrow 
domains (e.g., CUB and CelebA) have small changes for the CLIP scores.
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Robustness toward domains

• Randomly shuffled text-image alignments to see the change of scores. Narrow 
domains (e.g., CUB and CelebA) have small changes for the CLIP scores. 

• However, mutual information gives the better normalized scores across various 
domains (see CUB and COCO curves on the right).

77

CLIP Score

0.2

0.4

0.6

0.8

1.0

Shuffling ratio

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CUB
COCO
LN-COCO
MM-CelebA-HQ

Mutual Information

10

20

30

40

50

60

Shuffling ratio

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CUB
COCO
LN-COCO
MM-CelebA-HQ



Robustness toward CLIPs

• LAFITE (Zhou et al., 2021) used textual and visual encoders of the pre-trained CLIP 
ViT-B/32, VQ-Diffusion (Gu et al., 2021) used text encoder, while DM-GAN (Zhu et 
al., 2019) used none. GLIDE (Nichol et al., 2021) used their noised ViT-L CLIP. 

• Notice that InfoNCE and CLIP-R-Precision are related to contrastive training loss. 

• Although CLIPs impact on the performance of metrics, MID is the most stable metric.
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Representation diversity

• The covariance matrix of features can be the ground for representation diversity. 

• If the representations  are unbiased (mean is zero) and l2-normalized, the 
sum of all eigenvalues  of the covariance matrix is one. The proof is as follows: 

 

where  due to the definition of l2-normalization. 

• And, since  is (semi-)positive definite, . So, using the eigenvalues, we can 
define the probability distribution over dimensions (Friedman & Dieng, 2022). 

X ∈ ℝF×N

{λi}

∑
i

λi = tr(Σ) = tr(XX⊺/N) = 1

Σii = 1/N

Σ λi ≥ 0

Trace of a product: .tr(A⊺B) = tr(AB⊺) = tr(B⊺A) = tr(BA⊺)
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Representation diversity (Cont’d)

• The entropy of eigenvalues gives you the sense of feature diversity. 

• The higher entropy is the more diversity, vice versa. 

• For the multimodal representation pairs, we may use the joint (concatenated) features 
to get the covariance matrix. 

• The Vendi Score (Friedman & Dieng, 2022) measures the feature diversity using the 
below definition: 

VS(x1, ⋯, xN) = exp (−
F

∑
i=1

λi log λi)
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Remarks

• Cross-modality zero-shot capability is worth to explore. 

• Vision-language joint representation learning is moving from multimodal fusion to 
vision-language pre-training thanks to computing power and big data. 

• We can measure the multimodal representations using Gaussian feature assumption 
in aspect of multimodal alignment and their diversity.
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–Harry Golden

“The only thing that overcomes hard luck is hard work.” 
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